java求根号值_Java-求根号n(示例代码)

平方,开根号在java中是很简单的,Math.sqrt(double n)或者 Math.pow(double a, double b),求a的b次方。但是我们可以自己想想,这些方法到底是怎么实现的。

就拿开根号来解释,它有两种方法,二分法和牛顿迭代法。

二分法:

比如求根号5

第一步:折半:       5/2=2.5

第二步:平方校验:  2.5*2.5=6.25>5,并且得到当前上限2.5,记录。

第三步:再次向下折半:2.5/2=1.25

第四步:平方校验:1.25*1.25=1.5625<5,得到当前下限1.25,记录

第五步:再次折半:2.5-(2.5-1.25)/2=1.875

第六步:平方校验:1.875*1.875=3.515625<5,得到当前下限1.875,替换下限值

......

一直到与5的差值在你定义的误差范围内才结束循环

代码:

importjava.text.DecimalFormat;public classMain {public static double sqrt(doublenum){if(num<0) {return -1;

}double low = 0;double high = num/2;double precision = 0.000001;

//格式化,保证输出位数

DecimalFormat df= new DecimalFormat("#.00");double res =high;while(Math.abs(num-(res*res))>precision) {if(high*high >num) {double n= high - (high-low)/2;if(n*n>num) {

high=n;

}else if(n*n

low=n;

}else{returnDouble.valueOf(df.format(n));

}

res=n;

}else if(high*high num) {

low=high;

high=m;

}else if(m*m

low=high;

high=m;

}else{returnDouble.valueOf(df.format(m));

}

res=m;

}else{returnDouble.valueOf(df.format(high));

}

}returnDouble.valueOf(df.format(res));

}public static voidmain(String[] args) {double a = 7;

System.out.println(sqrt(37));

}

}

牛顿迭代法:

其实就是逼近的思想,例如我们要求a的平方根,首先令f(x)=x^2-a,那么我们的目的就是求得x使得f(x)=0,也就是求x^2-a这条曲线与x轴的交点,画图举例:

lazy.gif

由函数f(x)=x^2-a,我们求导可以知道,函数上任意一点(x,y)的切线的斜率为2x。假设过点(x0,y0)的切线方程为y=kx+b,那么切线与x轴的交点横坐标为-b/k。而b=y0-kx0,k=2x0,y0=x0^2-a,化简-b/k=(x0+a/x0)/2。

也就是说(x0+a/x0)/2是过点(x0,y0)的切线与x轴的交点的横坐标。记(x0+a/x0)/2=x‘,继续求过点(x‘,f(x‘))的切线与x轴的交点的横坐标x‘‘,很明显x‘‘比x‘更靠近函数f(x)=x^2-a与x轴的交点的横坐标(即a的正平方根)。逐渐的逼近f(x)=0;

所以公式为:x‘ = (x‘+a/x‘)/2。

代码:

importjava.text.DecimalFormat;public classMain1 {public static double sqrt(doublex) {if(x<0) {return -1;

}//格式化,保证输出位数

DecimalFormat df = new DecimalFormat("#.00");double k =x;double precision = 0.000001;while((k*k-x)>precision) {

k=0.5*(k+x/k);

}returnDouble.valueOf(df.format(k));

}public static voidmain(String[] args) {double a = 9;

System.out.println(sqrt(a));

}

}

参考文献:

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值