5 文本主题与分类之主题分类 --- 机器学习 --- 小白

本文介绍了中文自然语言处理中的关键词提取技术,包括基于TF-IDF和TextRank算法的方法,并探讨了LDA主题模型在文本分析中的应用,提供了代码示例和资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中文自然语言处理分析(引用大神成果)

作者:Irain
QQ:2573396010
微信:18802080892
百度云盘文件:(链接:https://pan.baidu.com/s/1Ym_1iLYSzTIZ-ajNFad_kA
提取码:hlyo)
视频链接:文本主题与分类

1 关键词提取

1.1 基于 TF-IDF 算法的关键词抽取

import jieba.analyse
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
◾sentence 为待提取的文本
◾topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
◾withWeight 为是否一并返回关键词权重值,默认值为 False
◾allowPOS 仅包括指定词性的词,默认值为空,即不筛选

import jieba.analyse as analyse
import pandas as pd
df = pd.read_csv("./data/technology_news.csv", encoding='utf-8')
df = df.dropna()
lines=df.content.values.tolist()
content = "".join(lines)
print "  ".join(analyse.extract_tags(content, topK=30, withWeight=False, allowPOS=()))

在这里插入图片描述

import jieba.analyse as analyse
import pandas as pd
df = pd.read_csv("./data/military_news.csv",
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值