一、Anaconda 简介
Anaconda 是一个用于数据科学和机器学习的开源工具,集成了 Python 环境管理、包安装和 Jupyter Notebook 等功能,适合管理不同项目的依赖环境。
二、Anaconda 安装步骤
1. 下载 Anaconda
-
选择版本:
- 根据系统选择 Windows/macOS/Linux。
- 建议下载 Python 3.x 版本(最新版)。
2. Windows 系统安装
-
双击安装包启动安装程序。
-
安装选项:
- 点击 Next。
- 阅读协议后点击 I Agree。
- 选择 Just Me(推荐)并点击 Next。
- 安装路径:建议默认路径(如
C:\Users\用户名\Anaconda3
),点击 Next。 - 重要步骤:勾选 Add Anaconda to my PATH environment variable(环境变量配置)和 Register Anaconda as my default Python,点击 Install。
-
等待安装完成,点击 Next → Finish。
3. macOS 系统安装
- 双击下载的
.pkg
文件。 - 按提示操作:
- 点击 Continue → Continue → Agree。
- 选择安装位置(默认即可),点击 Install。
- 安装完成后,打开终端输入
conda --version
测试是否成功。
4. Linux 系统安装
- 终端中进入下载目录,运行命令:
bash Anaconda3-202x.xx-Linux-x86_64.sh
- 按提示操作:
- 按回车阅读协议,输入
yes
同意。 - 选择安装路径(默认:
~/anaconda3
)。 - 是否初始化环境变量?输入
yes
。
- 按回车阅读协议,输入
三、验证安装
- 打开命令行工具:
- Windows:按
Win + R
,输入cmd
或搜索 Anaconda Prompt。 - macOS/Linux:打开终端。
- Windows:按
- 输入命令:
conda --version
- 显示版本号(如
conda 23.7.4
)即成功。
- 显示版本号(如
- 输入
python
,应显示 Python 版本信息含“Anaconda”字样。
四、Anaconda 基本使用
1. 管理虚拟环境
-
创建环境(例如创建名为
myenv
的 Python 3.8 环境):conda create --name myenv python=3.8
- 输入
y
确认安装依赖。
- 输入
-
激活环境:
conda activate myenv
-
退出环境:
conda deactivate
-
查看所有环境:
conda env list
-
删除环境:
conda env remove --name myenv
2. 安装/卸载包
-
安装包(如 numpy):
conda install numpy
- 或用
pip install numpy
(若 conda 源中找不到)。
- 或用
-
卸载包:
conda remove numpy
-
查看已安装的包:
conda list
3. 换国内镜像源加速
- 清华源配置:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes
五、使用 Jupyter Notebook
-
启动 Jupyter:
jupyter notebook
- 自动在浏览器打开页面。
-
新建 Notebook:
- 点击右上角 New → Python 3。
- 输入代码后按
Shift + Enter
运行。

-
保存和关闭:
- 点击 File → Save(默认保存为
.ipynb
文件)。 - 关闭浏览器标签页后,在终端按
Ctrl + C
退出服务。
- 点击 File → Save(默认保存为
六、常见问题
1. 找不到 conda
命令
- 原因:未正确配置环境变量。
- 解决:
- 重新安装并勾选 Add to PATH。
- 或手动添加 Anaconda 安装路径到系统环境变量。
2. 安装包时下载慢
- 解决:使用国内镜像源(如清华源)。
3. 环境切换无效
- 解决:确保使用
conda activate myenv
(旧版本可能需要source activate myenv
)。
七、总结
通过本教程,你已学会:
- 安装 Anaconda 并配置环境。
- 使用 conda 管理虚拟环境和包。
- 运行 Jupyter Notebook 进行开发。
开始你的数据科学之旅吧!如有问题,欢迎留言讨论。