我在Ubuntu 10.0.4上使用matplotlib 1.2.x和
Python 2.6.5.我正在尝试创建一个由顶部情节和底部情节组成的单一情节.
X轴是时间序列的日期.顶部图包含数据的烛台图,底部图应包含条形图 – 具有自己的Y轴(也在左侧 – 与顶部图相同).这两幅图不应超过.
这是迄今为止所做的一切.
datafile = r'/var/tmp/trz12.csv'
r = mlab.csv2rec(datafile, delimiter=',', names=('dt', 'op', 'hi', 'lo', 'cl', 'vol', 'oi'))
mask = (r["dt"] >= datetime.date(startdate)) & (r["dt"] <= datetime.date(enddate))
selected = r[mask]
plotdata = zip(date2num(selected['dt']), selected['op'], selected['cl'], selected['hi'], selected['lo'], selected['vol'], selected['oi'])
# Setup charting
mondays = WeekdayLocator(MONDAY) # major ticks on the mondays
alldays = DayLocator() # minor ticks on the days
weekFormatter = DateFormatter('%b %d') # Eg, Jan 12
dayFormatter = DateFormatter('%d') # Eg, 12
monthFormatter = DateFormatter('%b %y')
# every Nth month
months = MonthLocator(range(1,13), bymonthday=1, interval=1)
fig = pylab.figure()
fig.subplots_adjust(bottom=0.1)
ax = fig.add_subplot(111)
ax.xaxis.set_major_locator(months)#mondays
ax.xaxis.set_major_formatter(monthFormatter) #weekFormatter
ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
ax.format_ydata = price
ax.grid(True)
candlestick(ax, plotdata, width=0.5, colorup='g', colordown='r', alpha=0.85)
ax.xaxis_date()
ax.autoscale_view()
pylab.setp( pylab.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
# Add volume data
# Note: the code below OVERWRITES the bottom part of the first plot
# it should be plotted UNDERNEATH the first plot - but somehow, that's not happening
fig.subplots_adjust(hspace=0.15)
ay = fig.add_subplot(212)
volumes = [ x[-2] for x in plotdata]
ay.bar(range(len(plotdata)), volumes, 0.05)
pylab.show()
我已经设法使用上面的代码显示了两个图,但是底部的情况有两个问题:
>它完全覆盖了第一(上)情节的底部 – 几乎就像第二个情节正在绘制与第一个情节相同的“画布” – 我看不到哪里/为什么发生.
>它用自己的指示OVERWRITES现有的X轴,X轴值(日期)应在两个曲线之间共享.
我在代码中做错了什么?有人会发现什么是导致第二(底部)情节覆盖第一(上)情节 – 我该如何解决这个问题?
以下是上面代码创建的情节截图:
[[编辑]]
在修改hwlau建议的代码之后,这是新的情节.比起这两个地块分开的情况要好一些,但是下列问题依然存在:
> X轴应该通过两个曲线进行共享(即X轴应该只显示在第二个[底部]图上)
>第二块的Y值似乎不正确地形成
我认为这些问题应该很容易解决,但是我的matplotlib fu目前还不是很好,因为我最近才开始用matplotlib编程.任何帮助将不胜感激.