第十九题:删除链表的倒数第N个节点
解题想法:拿到题目后,我想到了,要是这个链表有个数组下标,总数知道了,位置知道了,
是不是想删除那个就非常方便了,这个方案在数据结构中的间接寻址,可以使用vector 方式使用
把对应指针记录下来,便可以解决,时间复杂度O(n),空间复杂度O(n),在题目中是空间不够
如果,想要空间复杂度小一点,可以使用3个指针,初始化第一个l指针为第一个,第二r为第二个,
第三个为e与第一个差距为n的指针位置,然后共同移动,知道最后一个e指到最后一个,那么r就是需要
删除的对象。l就是前一个指针,这样数据结构 时间复杂度O(n),空间复杂度O(1)
方案1:间接寻址
struct ListNode {
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
//方案1 使用vector<ListNode*>
ListNode* removeNthFromEnd(ListNode* head, int n)
{
vector<ListNode*> pList;
ListNode* current = head; //当前指向的指针
while (current)
{
pList.push_back(current);
current->next;
}
//判断pList的长度
int length = pList.size();
//要删除的下标位置
int index = length - n;
if (index == 0) //当为头的时候
{
current = head;
head = head->next;
delete current;
}
else //当不为头的时候
{
int proIndex = index - 1; //前一个位置
current = pList[index];
pList[proIndex]->next = pList[index]->next;
delete current;
}
return head;
}
方案2:双指针
//方案2 采用三个指针方式,简称就是双指针法。由于n是合理的,题目说了
ListNode* removeNthFromEnd2(ListNode* head, int n)
{
ListNode* L = head;
ListNode* R = L->next;
ListNode* End = L;
int length = 1;
if (!R && L) //这个时候有只有头
{
head = head->next;
return head;
}
for (int i = 0; i<n; i++)
{
if (End->next)
{
End = End->next;
length++;
}
}
//初始化后,开始共同移动
while (End->next)
{
End = End->next;
R = R->next;
L = L->next;
length++;
}
//这个时候End移动到了最后的位置了,可以删除R的数据了。
if (length == n)//删除是表头
{
head = head->next;
}
else
{
L->next = R->next;
}
return head;
}
第二十题:有效的括号
解题方案,看到这个就比较简单了,采用栈的性质,加入数据,判断时候匹配,合适就出栈,
数据遍历一遍后,发现栈为空的时候,就是true,发现栈不为空就是false。
bool isValid(string s)
{
stack<char> sta;
int length = s.length();
unordered_map<char, char> mapC =
{
{'(',')'},
{'[',']'},
{'{','}'}
};
if (length == 0)
{
return true;
}
if (s[0] != ' ')
{
sta.push(s[0]);
}
for (int i =1; i<length; i++)
{
if (s[i] == ' ')
{
continue;
}
if (sta.empty())
{
sta.push(s[i]);
}
else if (mapC[sta.top()] == s[i])
{
sta.pop();
}
else
{
sta.push(s[i]);
}
}
if (sta.empty())
{
return true;
}
else
{
return false;
}
}
这周的代码算是结束了,不过还是学会了很多技巧性,多点学习,多点尝试,就会有很多意想不到的结果。