seq2seq模型

7 篇文章 0 订阅
5 篇文章 0 订阅

做个记录

简单的seq2seq

输入一个序列,用一个 RNN (Encoder)编码成一个向量 u,再用另一个 RNN (Decoder)解码成一个序列输出,且输出序列的长度是可变的。

import tensorflow as tf

class Seq2seq(object):
    def __init__(self, config, w2i_target):
        self.seq_inputs = tf.placeholder(shape=(config.batch_size, None), dtype=tf.int32, name='seq_inputs')
        self.seq_inputs_length = tf.placeholder(shape=(config.batch_size,), dtype=tf.int32, name='seq_inputs_length')
        self.seq_targets = tf.placeholder(shape=(config.batch_size, None), dtype=tf.int32, name='seq_targets')
        self.seq_targets_length = tf.placeholder(shape=(config.batch_size,), dtype=tf.int32, name='seq_targets_length')
        
    with tf.variable_scope("encoder"):
        encoder_embedding = tf.Variable(tf.random_uniform([config.source_vocab_size, config.embedding_dim]), dtype=tf.float32, name='encoder_embedding')
        encoder_inputs_embedded = tf.nn.embedding_lookup(encoder_embedding, self.seq_inputs)
        encoder_cell = tf.nn.rnn_cell.GRUCell(config.hidden_dim)
        encoder_outputs, encoder_state = tf.nn.dynamic_rnn(cell=encoder_cell, inputs=encoder_inputs_embedded, sequence_length=self.seq_inputs_length, dtype=tf.float32, time_major=False)
    
    tokens_go = tf.ones([config.batch_size], dtype=tf.int32) * w2i_target["_GO"]
    decoder_inputs = tf.concat([tf.reshape(tokens_go,[-1,1]), self.seq_targets[:,:-1]], 1)

    
    with tf.variable_scope("decoder"):
        decoder_embedding = tf.Variable(tf.random_uniform([config.target_vocab_size, config.embedding_dim]), dtype=tf.float32, name='decoder_embedding')
        decoder_inputs_embedded = tf.nn.embedding_lookup(decoder_embedding, decoder_inputs)
        decoder_cell = tf.nn.rnn_cell.GRUCell(config.hidden_dim)
        decoder_outputs, decoder_state = tf.nn.dynamic_rnn(cell=decoder_cell, inputs=decoder_inputs_embedded, initial_state=encoder_state, sequence_length=self.seq_targets_length, dtype=tf.float32, time_major=False)
    
    decoder_logits = tf.layers.dense(decoder_outputs.rnn_output, config.target_vocab_size)
    self.out = tf.argmax(decoder_logits, 2)

训练阶段使用 teacher forcing这样做是好的,因为:

  • 防止上一时刻的错误传播到这一时刻,decode 出一个序列,要是第一个单词错了,整个序列就跑偏了,这个序列就没啥意义了,计算 loss 更新参数作用都很小了。用了 Teacher Forcing 可以阻断错误积累,斧正模型训练,加快参数收敛(我自己试了一下,用和不用 Teacher Forcing,训练时候的 loss 下降速度和最终结果真的差了不少)

  • 这样就可以提前把 decoder 的整个输入序列提前准备好,直接放到 dynamic_rnn 函数就能出结果,实现起来简单方便

但是,有个最大的问题:模型训练好了,到了测试阶段,你是不能用 Teacher Forcing 的,因为测试阶段你是看不到期望的输出序列的,所以必须乖乖等着上一时刻输出一个单词,下一时刻才能确定该输入什么。不能提前把整个 decoder 的输入序列准备好, 也就不能用 dynamic_rnn 函数了

利用组件来实现

tokens_go = tf.ones([config.batch_size], dtype=tf.int32) * w2i_target["_GO"]

decoder_embedding = tf.Variable(tf.random_uniform([config.target_vocab_size, config.embedding_dim]), dtype=tf.float32, name='decoder_embedding')
decoder_cell = tf.nn.rnn_cell.GRUCell(config.hidden_dim)

if useTeacherForcing:
    decoder_inputs = tf.concat([tf.reshape(tokens_go,[-1,1]), self.seq_targets[:,:-1]], 1)
    #接收的参数主要有一个大小为[batch_size, seqlen, embed_size]的输入inputs;以及每个句子的真实长度sequence_length,是一个[batch_size]的向量;
    #time_major为真则把seqlen作为第一维。注意下sequence_length是一个batch_size大小的数组,指明了每个句子的真实长度(因为有些长度是padding的)。
    helper =tf.contrib.seq2seq.TrainingHelper(tf.nn.embedding_lookup(decoder_embedding, decoder_inputs), self.seq_targets_length)
else:
    helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(decoder_embedding, tokens_go, w2i_target["_EOS"])
"""
helper 这个类来帮你自动地给 decoder rnn 的每个时刻提供不同的输入内容,用或不用 Teacher Forcing 的区别只在于将 helper 定义为 TrainingHelper 
  或是 GreedyEmbeddingHelper。 且这两种方式,从模型变量的角度看是没有区别的,只是数据的流动方式不同,也就是说,在实际应用中,可以在 train 
  阶段新建一个用 TrainingHelper 的模型,训练完了保存模型参数,在 test 阶段再新建另一个用 GreedyEmbeddingHelper 的模型,直接加载训练好的参
  数就可以用
"""
    
#BasicDecoder的作用就是定义一个封装了decoder应该有的功能的实例,根据Helper实例的不同,这个decoder可以实现不同的功能,
#比如在train的阶段,不把输出重新作为输入,而在inference阶段,将输出接到输入。
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, encoder_state, output_layer=tf.layers.Dense(config.target_vocab_size))
#dynamic_decode 函数类似于 dynamic_rnn,帮你自动执行 rnn 的循环,返回完整的输出序列
decoder_outputs, decoder_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(self.seq_targets_length))

decoder阶段加入attention

# decoder阶段的 attention机制  
decoder_cell = tf.nn.rnn_cell.GRUCell(config.hidden_dim)
if useAttention:
    attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(num_units=config.hidden_dim, memory=encoder_outputs, memory_sequence_length=self.seq_inputs_length)
    # attention_mechanism = tf.contrib.seq2seq.LuongAttention(num_units=config.hidden_dim, memory=encoder_outputs, memory_sequence_length=self.seq_inputs_length)
    decoder_cell = tf.contrib.seq2seq.AttentionWrapper(decoder_cell, attention_mechanism)
    decoder_initial_state = decoder_cell.zero_state(batch_size=config.batch_size, dtype=tf.float32)
    decoder_initial_state = decoder_initial_state.clone(cell_state=encoder_state)

decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, decoder_initial_state, output_layer=tf.layers.Dense(config.target_vocab_size))
decoder_outputs, decoder_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(self.seq_targets_length))
"""
直观上看就是把原来定义的最基础 GRU 单元(decoder_cell)外面套一个 AttentionWrapper,直接替换原来的 decoder_cell 就好,只有两个字,省事。
  全家桶提供了两种可选 attention 策略:BahdanauAttention 和 LuongAttention,具体区别不细说了,主要是 attention score 怎么计算以及“c”
  怎么结合到输入中的问题,实践上效果差异基本不大
"""

预测阶段加入beam search

tokens_go = tf.ones([config.batch_size], dtype=tf.int32) * w2i_target["_GO"]
decoder_cell = tf.nn.rnn_cell.GRUCell(config.hidden_dim)

if useBeamSearch > 1:
"""
这回就是把 decoder 从 BasicDecoder 换成 BeamSearchDecoder 就完事了,这封装的,流弊

因为使用了 Beam Search,所以 decoder 的输入形状需要做 K 倍的扩展,tile_batch 就是用来干这个。
  如果和之前的 AttentionWrapper 搭配使用的话,还需要把encoder_outputs 和 sequence_length 都用 
  tile_batch 做一下扩展,具体可以看代码,不细说了
"""
    decoder_initial_state = tf.contrib.seq2seq.tile_batch(encoder_state, multiplier=useBeamSearch)
    decoder = tf.contrib.seq2seq.BeamSearchDecoder(decoder_cell, decoder_embedding, tokens_go, w2i_target["_EOS"],  decoder_initial_state , beam_width=useBeamSearch, output_layer=tf.layers.Dense(config.target_vocab_size))
else:
    decoder_initial_state = encoder_state
    decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper, decoder_initial_state, output_layer=tf.layers.Dense(config.target_vocab_size))

decoder_outputs, decoder_state, final_sequence_lengths = tf.contrib.seq2seq.dynamic_decode(decoder, maximum_iterations=tf.reduce_max(self.seq_targets_length))  
# 如果使用beam search 最终的输出是beam_width个
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值