算法衡量auc_链路预测算法的评价指标

文章详细介绍了用于链路预测算法评估的三种指标:AUC、Precision和Ranking Score。AUC全局衡量算法准确性,Precision关注前L位预测准确性,Ranking Score侧重边的排序质量。AUC是主要标准,当AUC相近时,Precision成为次要衡量指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

b88c6e713ff0c924a1fedd1c632cb59c.png

该文章主要参考吕琳媛的《复杂网络链路预测》以及博文《链路预测(Link prediction)中常用的评价指标(evaluation metrics)》。

衡量链路预测算法精确度的指标有三种:AUC、Precision、Ranking Score。

定义 ( G, V, E) 为一个无向网络,其中V为节点集合,E为边集合。网络总的节点数为N,边数为M。该网络共有N(N-1)/2个节点对,即全集U。

将已知的连边

分为训练集
和测试集
两部分。从数据集中选取一部分边作为测试集
,并将这部分边从数据集中删去,由数据集中剩余部分的边作为训练集
。显然有
,且
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值