torch标准化_Pytorch:数据增强与标准化

本文详细介绍了PyTorch中的数据增强与标准化方法,包括各种裁剪、翻转、旋转操作,如RandomCrop、RandomHorizontalFlip、RandomRotation等,以及标准化、ToTensor、ColorJitter等图像变换技术,还有数据增强的灵活性操作如RandomChoice、RandomApply和RandomOrder等。
摘要由CSDN通过智能技术生成

本文对transforms.py中的各个预处理方法进行介绍和总结。主要从官方文档中总结而来,官方文档只是将方法陈列,没有归纳总结,顺序很乱,这里总结一共有四大类,方便大家索引:

裁剪——Crop 中心裁剪:transforms.CenterCrop 随机裁剪:transforms.RandomCrop 随机长宽比裁剪:transforms.RandomResizedCrop 上下左右中心裁剪:transforms.FiveCrop 上下左右中心裁剪后翻转,transforms.TenCrop

翻转和旋转——Flip and Rotation 依概率p水平翻转:transforms.RandomHorizontalFlip(p=0.5) 依概率p垂直翻转:transforms.RandomVerticalFlip(p=0.5) 随机旋转:transforms.RandomRotation

图像变换 resize:transforms.Resize 标准化:transforms.Normalize 转为tensor,并归一化至[0-1]:transforms.ToTensor 填充:transforms.Pad 修改亮度、对比度和饱和度:transforms.ColorJitter 转灰度图:transforms.Grayscale 线性变换:transforms.LinearTransformation() 仿射变换:transforms.RandomAffine 依概率p转为灰度图:transforms.RandomGrayscale 将数据转换为PILImage:transforms.ToPILImage transforms.Lambda:Apply a user-defined lambda as a transform

对transforms操作,使数据增强更灵活 transforms.RandomChoice(transforms), 从给定的一系列transforms中选一个进行操作 transforms.RandomApply(transforms, p=0.5),给一个transform加上概率,依概率进行操作 transforms.RandomOrder,将transforms中的操作随机打乱

一、 裁剪——Crop

1.随机裁剪:transforms.RandomCrop

class torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode=‘constant‘)

功能:依据给定的size随机裁剪

参数:size- (sequen

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值