我将从每一个技能和我学习的过程都罗列出来
如果各位大神有优质的资源可以推荐给我,我写的只是我看的东西
数据分析岗位有哪些
技术型分析师更接近于数据挖掘工程师、算法工程师、大数据工程师这种概念,一般来说是需要比较好的数据结构知识和算法知识,对于非计算机专业的同学,转型会有一定难度。其实一开始我考虑的是这种分析师,但在后面刷了几百道leetcode题之后,决定放弃这条路(太难了)。
第二种就是偏业务型的数据分析师,也是市面上岗位最多的数据分析师,这种分析师的门槛会相对比较低一点,但做不好的话,很有可能就变成报表分析师,提数分析师。不过毕竟门槛还是比较低的,对于想转型的同学,业务型数据分析师会更加友好一些

数据分析需要的思维和方法论
我看的东西有
数据分析思维:分析方法和业务知识(链接:https://www.zhihu.com/pub/book/120076545)也可以看这篇文章:https://blog.csdn.net/data_cola/article/details/112208853
和这篇文章:https://blog.csdn.net/data_cola/article/details/116026089
和这篇文章:https://blog.csdn.net/data_cola/article/details/112299768
精益数据分析(链接:https://www.zhihu.com/pub/book/119565068)
必须具备的基础:统计学、机器学习
我买了还没有看的有
《数据化管理:洞悉零售及电子商务运营》、《数据挖掘与数据化运营实战 思路、方法、技巧与应用》
《从点子到产品:产品经理的价值观与方法论》、《俞军产品方法论》、《产品思维》
《金字塔原理》、《学会提问》、《麦肯锡思维》
视

本文探讨了数据分析岗位的两大类型——技术型和业务型,并详细介绍了所需的数据分析思维、方法论、必备工具如Excel、SQL、Python,以及推荐的学习资源和数据科学比赛平台。强调了统计学和机器学习基础知识的重要性,并提供了丰富的学习视频和书籍链接。
最低0.47元/天 解锁文章
234

被折叠的 条评论
为什么被折叠?



