本文中提到的结论1-3,请回顾圆锥曲线(18)———圆锥曲线题目背后的性质总结(1)
结论7:结论1推导出的三点共线(直线过定点) | |
结论8:结论2推导出的三点共线(直线过定点) | |
结论9:结论3推导出的三点共线(直线过定点) | |
昨日粉丝总量322 昨日阅读数153
前文回顾:(导数)
导数(2)———极值点偏移(2)——证明对数均值不等式
导数(1)———极值点偏移(1)
前文回顾:(圆锥曲线)
圆锥曲线(20)———圆锥曲线题目背后的性质总结(3)
圆锥曲线(19)———圆锥曲线题目背后的性质总结(2)
圆锥曲线(18)———圆锥曲线题目背后的性质总结(1)
圆锥曲线(17)———从沈阳市一道一模解几题目看斜率乘积为定值的多方面呈现与启示
圆锥曲线(16)———一定二动三相反,斜率确定,相等于切线斜率,怎么算简单?
圆锥曲线(15)———从19南京盐城一模解几题看斜率(距离)乘积定值
圆锥曲线(14)———求助!!数学高手帮我证明!极点极线距离乘积为定值,焦点准线纵坐标乘积为定值
圆锥曲线(13)———椭圆切线方程的6种证明方法
圆锥曲线(12)———利用极点极线解决定点问题举例
圆锥曲线(11)———利用极点极线解决定点问题举例
圆锥曲线(10)———你知道圆锥曲线的焦点准线,切点切线,现在有必要知道它的极点极线(2)
圆锥曲线(9)———你知道圆锥曲线的交点准线,切点切线,现在有必要知道它的极点极线(1)
圆锥曲线(8)———平面几何解释三斜率成等差数列
圆锥曲线(7)———第一次升级,准线上任意一点与焦点,两交点连线三斜率成等差数列
圆锥曲线(6)———两个定点推导斜率和为定值0,第一部分结束,接下来它要不停的变形
圆锥曲线(5)———椭圆中的等角定理推广到抛物线中
圆锥曲线(4)———椭圆中的等角定理如何推广到双曲线和抛物线中
圆锥曲线(3)———坐标轴上一定点与椭圆两点(横坐标不同)连线斜率之和为0,过两点直线恒过定点
圆锥曲线(2)———椭圆焦点弦两端点与坐标轴上哪一点相连所成夹角被坐标轴平分
圆锥曲线(1)———椭圆焦点弦两端点与坐标轴上哪一点相连所成夹角被坐标轴平分
前文回顾:(过定点直线与坐标轴围成三角形面积问题)
直线与圆——直线——过定点直线和坐标轴围成的三角形面积问题(1)
直线与圆——直线——过定点直线和坐标轴围成的三角形面积问题(2)
直线与圆——直线——过定点直线和坐标轴围成的三角形面积问题(3)
前文回顾:(数学工具)
数学工具——公式——元旦礼物第二发,公式和文本一直对不齐咋整?换公式大小得一个个改?
数学工具——公式——mathpix截图转公式
前文回顾:(奔驰定理与四心四线表示)
向量——平面向量基本定理(7)——大结局(下)元旦礼物第一发,Word版下载“四心四线”汇总!
向量——平面向量基本定理(6)——大结局(上)真的是最后一种表示方法了,四心如何用数量积识别
向量——平面向量基本定理(5)——向量表示点P究竟在三角形的哪条线(四线)上
向量——平面向量基本定理(4)——这应该是你最想要的四心向量表示的证明方法(2)
向量——平面向量基本定理(3)——三角形四心的众多表示方法(1)
向量——平面向量基本定理(2)——奔驰定理这样对照证明更好
向量——平面向量基本定理(1)——用长度,面积,和体积来分解向量
前文回顾:(极化恒等式)
向量——极化恒等式(8)——矩形对角线性质论证蒙日圆
向量——极化恒等式(7)——矩形对角线性质应用
向量——极化恒等式(6)——推导平行四边形和矩形性质
向量——极化恒等式(5)——推导中线公式
向量——极化恒等式(4)——另一种向量平方差公式
向量——极化恒等式(3)——另一种向量平方差公式
向量——极化恒等式(2)——简单的取值范围
向量——极化恒等式(1)
前文回顾:(米勒问题)
三角——和差公式(5)——米勒定理究竟可以取代多少代数运算
三角——和差公式(4)——再说锐角米勒
三角——和差公式(3)——锐角米勒问题转
三角——和差公式(2)——直角米勒问题转化
三角——和差公式(1)——米勒问题(最大张角问题)
创原创原创原创原创原创原创原创原创原创原创原创原创原创
原创原创原创原