参考文章: https://en.wikipedia.org/wiki/Grubbs%27s_test
原理
格拉布斯检验1是一种假设检验方法(显著检验法),其原假设为:
H 0 : H_0: H0: 数据集中没有离群值
H 1 : H_1: H1: 数据集中存在离群值
设数据集为: x 1 , x 2 , ⋯ , x n x_1, x_2, \cdots, x_n x1,x2,⋯,xn计算 Grubbs 检验的检验统计量如下:
G = max ∣ x i − x ˉ ∣ s G=\frac{\max |x_i-\bar{x}|}{s} G=smax∣xi−xˉ∣
其中 s s s 为样本的标准差:
s = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 s=\sqrt{\frac{\sum_{i=1}^{n} (x_i-\bar{x})^2}{n-1}} s=