格拉布斯离群值检验——理论与 Python 实现

本文介绍了格拉布斯检验,一种用于检测数据集中离群值的假设检验方法。详细阐述了检验的原理,并提供了Python代码实现。在设定显著性水平α=0.95时,当检验统计量G大于特定临界值,表明数据中存在离群值。通过不断迭代,可以找出并移除样本中的离群值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


参考文章: https://en.wikipedia.org/wiki/Grubbs%27s_test

原理

格拉布斯检验1是一种假设检验方法(显著检验法),其原假设为:
H 0 : H_0: H0: 数据集中没有离群值
H 1 : H_1: H1: 数据集中存在离群值

设数据集为: x 1 , x 2 , ⋯   , x n x_1, x_2, \cdots, x_n x1,x2,,xn计算 Grubbs 检验的检验统计量如下:
G = max ⁡ ∣ x i − x ˉ ∣ s G=\frac{\max |x_i-\bar{x}|}{s} G=smaxxixˉ
其中 s s s 为样本的标准差:
s = ∑ i = 1 n ( x i − x ˉ ) 2 n − 1 s=\sqrt{\frac{\sum_{i=1}^{n} (x_i-\bar{x})^2}{n-1}} s=

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhuo木鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值