数据结构---堆

本文介绍了如何使用Java实现一个大顶堆,包括插入新元素时保持堆的性质,以及删除堆顶元素并重新堆化的过程。堆的存储使用数组,通过交换和堆化操作维护堆的特性。
摘要由CSDN通过智能技术生成

大顶堆:父节点的值大于左右子节点
小顶堆:父节点的值小于左右子节点
堆的存储使用数组结构,数组第0号位空出来
如果当前节点的索引是i,那么父节点的索引是i / 2,左孩子节点的索引是 2 * i,右孩子的节点是2 * i + 1
以下都以大顶堆为例

插入

插入到数组尾部,如果父节点的值大于当前值则交换父节点值和当前值

删除(堆顶元素)

堆中最后一个值赋给堆顶元素,然后从上往下堆化。把父节点值赋给左右子孩子中大的一个(n/2 + 1到n个子节点不用堆化,因为是叶子节点)

public class Heap {
    public int[] array;
    /**
     * 堆中已经存储的元素数量
     */
    public int count;
    /**
     * 堆的最大容量
     */
    public int capacity;
    public Heap(int capacity) {
        array = new int[capacity + 1];
        count = 0;
        this.capacity = capacity;
    }

    /**
     * 插入
     */
    public void insert(int val) {
        if (count >= capacity) {
            return;
        }

        count++;
        array[count] = val;
        int i = count;
        while (i / 2 > 0 && array[i] > array[i / 2]) {
            swap(array, i, i / 2);
            i = i / 2;
        }
    }

    private void swap(int[] array, int p, int q) {
        int temp = array[p];
        array[p] = array[q];
        array[q] = temp;
    }

    /**
     * 删除
     */
    public void removeMax() {
        if (count == 0) return ; // 堆中没有数据
        array[1] = array[count];
        --count;
        heapify(array, count, 1);
    }

    private void heapify(int[] a, int n, int i) { // 自上往下堆化
        while (true) {
            int maxPos = i;
            if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
            if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
            if (maxPos == i) break;
            swap(a, i, maxPos);
            i = maxPos;
        }
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值