爱心的数学函数方程_高中生必读:历年高考数学大题整合,数学高频考点答题方法有迹可循,涨分必备...

本文分析了近年来高考数学大题的出题趋势,包括三角函数与数列、立体几何、解析几何、概率统计和函数与导数五大板块。三角函数侧重正余弦定理,数列地位下降,立体几何常考平行垂直证明,解析几何注重运算,概率统计结合实际背景,函数与导数考查函数单调性和极值。建议考生根据这些趋势有针对性地备考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结合近年来高考数学试题的出题情况来看,近年来大题的考点更加固定,考法、设问也更加有迹可循,所以同学们也完全可以根据套路来答题。

b1192516edfa3c8d5f71e21c0d5974c7.png

今天学姐就跟大家来看看数学大题不同知识点上侧重的考题方向有哪些吧。

(你的爱心小赞赞和喜欢,就是学姐继续更新下去的动力哦~笔芯~)

ps:关注我,以免明天发布其他学习资料,找不到我哦

1.三角函数和数列

在全国Ⅰ卷中每年只考一个,不考的那一个一般用一道或两道小题代替。三角函数大题侧重于考解三角形,重点考查正、余弦定理,小题中侧重于考查三角函数的图象和性质。数列一般考求通项、求和.数列应用题已经多年不考了,总体来说数列的地位已经降低,题目难度小。

理科数学2016、2017、2018、2019连续四年没有考查数列解答题,都是以选择填空形式出现。

2.立体几何

9年高考,每年1题,第1问多为证明平行垂直问题,第2问多为求二面角或直线与平面所成的角,常用空间向量法求解。辅助线;建系。

3.解析几何

9年高考,每年1题。全国Ⅰ卷中,载体用过抛物线和椭圆!不侧重两类圆锥曲线的整合,只侧重于直线与圆锥曲线的联系。

圆锥曲线一定过方法关、运算关。其实近几年的圆锥曲线题目更侧重于运算,方法还是比较常规的。为什么这样呢?这与命题人的苦衷有关系,因为圆锥曲线是压轴题,压轴题不能简单,简单了肯定不行。但太难、或是思维量太大又怕把很多人拒之门外,所以又不敢出思维量太大的题目,最后就只剩下运算了,谁有能耐谁就能算出来,没有能耐就算不出来,但不能说题目难。

22e079e186f3d8536260fbf62fee7ed4.png

4.概率统计

9年高考,每年1题。第1问多为统计问题,第2问多为分布列、期望计算问题,实际生活背景在加强。频率分布直方图、茎叶图、回归分析、独立性检验、正态分布等都有可能考。

以往概率统计大题一般在第18题或19题考,2018年放在第20题考与导数结合,2019年放在第21题考与数列结合,这是一个信号。

线性回归的公式要理解含义学会代入数据;正态分布要理解对称性;二项分布和超几何分布要区别开;二项分布数学期望和方差可以直接用公式求解。

圆锥曲线的定义很重要,性质要学会联系;设直线联立方程,利用根与系数关系(韦达定理)得出结论;

5.函数与导数

函数与导数大题9年高考,每年1题。

函数载体上:对数函数很受“器重”,指数函数也较多出现,两种函数也会同时出现。但是,无论怎么考,讨论单调性永远是考查的重点,而且紧紧围绕分类整合思想的考查。

在考查分离参数还是考查不分离参数上,命题者会大做文章,分离(分参)还是不分离(部参),的确是一个问题。一般说来,主要考查不分离问题(部参)。

另外,函数与方程的转化也不容忽视,如函数零点的讨论;函数题设问灵活,多数考生做到此题,时间紧,若能分类整合,抢一点分就很好了。

还有,灵活性问题,有些情况下函数性质是不用导数就可以“看出”的,如增函数 增函数=增函数,复合函数单调性,显然成立的不等式,放缩法等等。总之,导数是很重要,但是有些解题环节,不要“吊死”在导数上,不要过于按部就班,还有数形结合有时也是可以较快得到答案的,虽然应为表达不严谨不得满分,但是在时间紧的情况下可以适当使用。

导数题强调用,用就是导数的应用,即用导数来研究函数的单调性与极值。主要包括导数的几何意义、导数与函数的单调性、极值、用导数解决不等式问题、恒成立问题、分离参数以及式子的变形与调整、构造函数等等。

在命题的载体上,即使用何种函数上,命题者的函数是如何构造出来的?

首先确定是多项式函数、还是指对函数、分式函数、根式函数。指对函数是单独的指数函数、对数函数,还是指对函数组合在一起,一个省份往往是指数函数、对数函数交替出现,在很大程度上是先有的导函数。

再有是原函数,再把原函数适当调整,这样就出现了式子的调整与变形。调整变形是最难的一个环节,分离参数是从方法的需要,式子的调整也是在原函数的基础上适当变形所致。

以上就是近几年高考数学试题的出题趋势,你明白了么?

学姐祝愿所有的同学都能够最终得偿所愿,考入自己心仪的大学哦~

f4cb1d9671966aeb6acc8e7a91b82b4f.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值