函数 | 参数 | 功能 | 备注 | 其他 |
pd.read_csv() | 路径 | 读文件 | csv、txt | |
pd.read_excel() | ||||
pd.read_sql() | ||||
df.to_csv() | 写文件 | |||
df.to_excel() | ||||
df.to_sql() |
参考官方文档,有更多I/O操作:https://pandas.pydata.org/pandas-docs/stable/reference/io.html
函数 | 功能 | 备注 | 其他 |
df.head() | 预览数据前几行,默认5 | df.head(10)看前10行 | |
df.tail() | 预览数据尾部几行,默认5 | ||
df.shape | 返回数据行数 | ||
df.columns() | 返回数据列名称 | ||
df.dtypes() | 看数据类型 | ||
df.describe() | 数据描述性统计 | ||
S.value_counts() | 离散变量,出现的次数 | df['某一列'].value_counts() | |
S.quantile() |
函数 | 功能 | 说明 | 备注 |
df.isnull() | 判断数据是狗存在缺失值 | ||
df.duplicated() | 判断是否存在重复值 | ||
df.dropna() | 删除缺失值 | ||
df.fillna() | 填充缺失值 | ||
df.drop_deplicated() | 删除重复值 | ||
df.drop() | 删除某行或者某列 | df.drop(['a','b',axis=1]) 删除名为 a, b的 列 | |
df.rename() | 重命名 | ||
df.reset_index | 行索引转变量 |
函数 | 功能 | 备注 | 其他 |
S.astype() | 可转int、float、str | ||
pd.to_datetime | 转为日期时间型 | ||
S.map() | |||
S.apple() | 元素集处理 | 可以自己定义处理函数 |
函数 | 功能 | 备注 | |
pd.concat() | 数据合并 | 按照行或者列,指定axis= 0 行 1列 | |
pd.merge() | 数据连接 | 与数据库操作类似 | |
pd.pivot_table() | 透视图 | ||
df.groupby() | 数据分组 | ||
df.groupby.summarize() | 分组统计 |