pandas基础--数据读写、数据情况、数据清洗、类型转换、数据连接

 

数据读写操作函数
函数参数功能备注

其他

pd.read_csv()路径读文件csv、txt 
pd.read_excel()   
pd.read_sql()   
df.to_csv()写文件  
df.to_excel()   
df.to_sql()   

 

参考官方文档,有更多I/O操作:https://pandas.pydata.org/pandas-docs/stable/reference/io.html

数据统计函数
函数功能备注其他
df.head()预览数据前几行,默认5df.head(10)看前10行 

df.tail()

预览数据尾部几行,默认5  
df.shape返回数据行数  
df.columns()返回数据列名称  
df.dtypes()看数据类型  
df.describe()数据描述性统计  
S.value_counts()离散变量,出现的次数df['某一列'].value_counts() 
S.quantile()   

 

数据清洗函数
函数功能说明备注
df.isnull()判断数据是狗存在缺失值  
df.duplicated()判断是否存在重复值  
df.dropna()删除缺失值  
df.fillna()填充缺失值  
df.drop_deplicated()删除重复值  
df.drop()删除某行或者某列df.drop(['a','b',axis=1]) 删除名为 a, b的 列 
df.rename()重命名  
df.reset_index行索引转变量  
类型转换
函数功能备注其他
S.astype() 可转int、float、str 
pd.to_datetime 转为日期时间型 
S.map()   
S.apple()元素集处理可以自己定义处理函数 
数据合并
函数功能备注 
pd.concat()数据合并按照行或者列,指定axis= 0 行  1列 
pd.merge()数据连接与数据库操作类似 
pd.pivot_table()透视图  
df.groupby()数据分组  
df.groupby.summarize()分组统计  

本文参考:https://mp.weixin.qq.com/s/V-TLclTfzWSEoAk4H74ONw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值