前言
OCR身份证识别是光学字符识别技术在身份证领域的应用。通过扫描或拍照获取身份证图像,利用图像处理、深度学习等技术,自动提取姓名、性别、民族、出生日期、地址、身份证号等信息,可大幅提升信息录入效率,广泛应用于政务、金融、酒店等场景,保障身份核验的准确性与便捷性。
一、环境
语言:Pytnon
开发工具:PyCharm
二、在线测试
秒级识别,准确率高达99%,测试地址:http://47.108.177.251:9000。(由于当前租用的云服务性能存在局限性,导致识别速度稍显迟缓,在普通办公电脑部署测试验证,识别结果可在 3 秒内输出。)
三、核心技术
import cv2
import pytesseract
def ocr_local(image_path):
# 读取图像
img = cv2.imread(image_path)
# 预处理(按需调整)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# 设置中文识别(需要下载chi_sim训练数据)
custom_config = r'--oem 3 --psm 6 -l chi_sim'
text = pytesseract.image_to_string(thresh, config=custom_config)
return text
# 使用示例
print(ocr_local('身份证照片.jpg'))
from aip import AipOcr
# 配置百度OCR应用信息
APP_ID = '你的APP_ID'
API_KEY = '你的API_KEY'
SECRET_KEY = '你的SECRET_KEY'
client = AipOcr(APP_ID, API_KEY, SECRET_KEY)
def ocr_vehicle_license(image_path):
# 读取图片
with open(image_path, 'rb') as f:
image = f.read()
# 调用行驶证识别接口
result = client.vehicleLicense(image)
# 解析结果
if 'words_result' in result:
data = {}
for key, value in result['words_result'].items():
data[key] = value['words']
return data
else:
return None
# 使用示例
if __name__ == '__main__':
image_path = '身份证照片.jpg'
result = ocr_vehicle_license(image_path)
if result:
print(f"姓名:{result.get('name', '')}")
print(f"性别: {result.get('sex', '')}")
print(f"民族: {result.get('ethnicity', '')}")
print(f"住址: {result.get('address', '')}")
print(f"身份证号: {result.get('IDCardNum', '')}")
else:
print("识别失败")
注意:
-
百度API版本需要网络
-
本地版需要安装Tesseract并下载中文语言包(应用场景更广泛)
-
实际应用中需要根据行驶证版式添加图像预处理和结果解析逻辑