LeetCode51_N皇后问题

知识点:全排列问题与N皇后问题都是两个经典的回溯算法的例子。

回溯算法是有一个基本的框架流程。

看到的一个特别详细的回溯算法博客:https://leetcode-cn.com/problems/n-queens/solution/hui-su-suan-fa-xiang-jie-by-labuladong/


N皇后问题:给你一个 N×N 的棋盘,让你放置 N 个皇后,使得它们不能互相攻击。

PS:皇后可以攻击同一行、同一列、左上左下右上右下四个方向的任意单位。

这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。

作者:labuladong
链接:https://leetcode-cn.com/problems/n-queens/solution/hui-su-suan-fa-xiang-jie-by-labuladong/
来源:力扣(LeetCode)
 


class Solution {
public:
    vector<vector<string>> res; //定义返回变量res是个二维数组形式
    vector<vector<string>> solveNQueens(int n) {
        vector<string> board(n, string(n, '.'));//创建一个一维形式的棋盘,并初始化为空棋盘
        backtrack(board, 0);
        return res;   
    }

    // 路径:board 中小于 row 的那些行都已经成功放置了皇后
    // 选择列表:第 row 行的所有列都是放置皇后的选择
    // 结束条件:row 超过 board 的最后一行
    /*回溯算法框架 */
    void backtrack(vector<string>& board, int row) {
        // 触发结束条件
        if (row == board.size()) {
            res.push_back(board); //如果满足结束条件,将路径添加到返回结果中
            return;
        }
    
        int n = board[row].size();//列数
        for (int col = 0; col < n; col++) {//for 选择 in 选择列表
            // 排除不合法选择
            if (!isValid(board, row, col)) 
                continue;
            // 做选择
            board[row][col] = 'Q';//将该选择从选择列表移除,而添加到路径中
            // 进入下一行决策
            backtrack(board, row + 1);
            // 撤销选择
            board[row][col] = '.';//是将该选择从路径里面移除,【而重新添加到选择列表中】
        }
    }

    /* 是否可以在 board[row][col] 放置皇后? */
    bool isValid(vector<string>& board, int row, int col) {
        int n = board.size();//行数
        // 检查列是否有皇后互相冲突
        for (int i = 0; i < n; i++) {
            if (board[i][col] == 'Q')
                return false;
        }
        // 检查右上方是否有皇后互相冲突
        for (int i = row - 1, j = col + 1; 
                i >= 0 && j < n; i--, j++) {
            if (board[i][j] == 'Q')
                return false;
        }
        // 检查左上方是否有皇后互相冲突
        for (int i = row - 1, j = col - 1;
                i >= 0 && j >= 0; i--, j--) {
            if (board[i][j] == 'Q')
                return false;
        }
        return true;
    }
};

 

发布了65 篇原创文章 · 获赞 5 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览