文章目录
大家好,我是欧K。
五一小长假即将来临,今年福利(五天假期)时间充裕,这么长的假期,你想怎样玩?
这样玩?
还是这样玩?
本期我们通过去哪儿网各省门票的售卖情况,简单分析一下全国比较热门的景点分布和国民出游情况,看看哪些景点比较受欢迎,希望对小伙伴们有所帮助。
涉及到的内容:
request+json–网页数据爬取
openpyxl–保存数据至Excel
pandas–表格数据处理
pyechars–数据可视化
1. 网页分析
打开去哪儿网门票页:https://piao.qunar.com/,以北京为例:
可以看到推荐的一些景点信息。F12打开浏览器调试窗口,查找加载数据的url,点击每一页观察网址变化:
网址:
'https://piao.qunar.com/ticket/list.json?keyword=%E5%8C%97%E4%BA%AC®ion=&from=mpl_search_suggest&page=1'
'https://piao.qunar.com/ticket/list.json?keyword=%E5%8C%97%E4%BA%AC®ion=&from=mpl_search_suggest&page=2'
'https://piao.qunar.com/ticket/list.json?keyword=%E5%8C%97%E4%BA%AC®ion=&from=mpl_search_suggest&page=3'
'https://piao.qunar.com/ticket/list.json?keyword=%E5%8C%97%E4%BA%AC®ion=&from=mpl_search_suggest&page=4'
'https://piao.qunar.com/ticket/list.json?keyword=%E5%8C%97%E4%BA%AC®ion=&from=mpl_search_suggest&page=5'
北京=%E5%8C%97%E4%BA%AC,可以看到,每页网址只有page的值在发生变化,keyword参数可以直接写中文。
看一下接口返回信息:
nice!返回的是json字串,简直不要太好!
2. 爬取数据
准备工作,导入以下模块:
import os
import time
import json
import random
import requests
from fake_useragent import UserAgent
from openpyxl import Workbook, load_workbook
如果模块缺失,直接pip安装即可。
2.1 34个行政区
cities = ['广东', '北京', '上海', '天津', '重庆', '云南', '黑龙江', '内蒙古', '吉林',
'宁夏', '安徽', '山东', '山西', '四川', '广西', '新疆', '江苏', '江西',
'河北', '河南', '浙江', '海南', '湖北', '湖南', '澳门', '甘肃',
'福建', '西藏', '贵州', '辽宁', '陕西', '青海', '香港', '台湾']
2.2 爬取每个行政区数据
代码:
def get_city_scenic(city, page):
ua = UserAgent(verify_ssl=False)
headers = {'User-Agent': ua.random}
url = f'https://piao.qunar.com/ticket/list.json?keyword={city}®ion=&from=mpl_search_suggest&sort=pp&page={page}'
result = requests.get(url, headers=headers, timeout=10)
result.raise_for_status()
return get_scenic_info(city, result.text)
这里用到了f-string格式构造url,具体用法可参考下面这篇文章(点击跳转):
技巧 | 5000字超全解析Python三种格式化输出方式【% / format / f-string】
2.3 爬取每一页数据
代码:
def get_scenic_info(city, response):
response_info = json.loads(response)
sight_list = response_info['data']['sightList']
one_city_scenic = []
for sight in sight_list:
scenic = []
name = sight['sightName'] # 景点名称
star = sight.get('star', None) # 星级
score = sight.get('score', 0) # 评分
price = sight.get('qunarPrice', 0) # 价格
sale = sight.get('saleCount', 0) # 销量
districts = sight.get('districts', None) # 省,市,区
point = sight.get('point', None) # 坐标
intro = sight.get('intro', None) # 简介
free = sight.get('free', True) # 是否免费
address = sight.get('address', None) # 具体地址
scenic.append(city)
scenic.append(name)
scenic.append(star)
scenic.append(score)
scenic.append(price)
scenic.append(sale)
scenic.append(districts)
scenic.append(point)
scenic.append(intro)
scenic.append(free)
scenic.append(address)
one_city_scenic.append(scenic)
return one_city_scenic
大家可以根据自己的需要爬取部分字段。
2.4 循环爬取每个行政区每页数据
代码:
def get_city_info(cities, pages):
for city in cities:
one_city_info = []
for page in range(1, pages+1):
try:
print(f'正在爬取-{city}(省/市), 第{page}页景点数据...')
time.sleep(random.uniform(0.8,1.5))
one_page_info = get_city_scenic(city, page)
except:
continue
if one_page_info:
one_city_info += one_page_info
输出部分信息,这样便于查看当前进度:
2.5 保存数据
这里我们使用openpyxl将数据保存到Excel中,大家也可以尝试保存其他文件或者数据库中:
def insert2excel(filepath,allinfo):
try:
if not os.path.exists(filepath):
tableTitle = ['城市','名称','星级','评分','价格','销量','省/市/区','坐标','简介','是否免费','具体地址']
wb = Workbook()
ws = wb.active
ws.title = 'sheet1'
ws.append(tableTitle)
wb.save(filepath)
time.sleep(3)
wb = load_workbook(filepath)
ws = wb.active
ws.title = 'sheet1'
for info in allinfo:
ws.append(info)
wb.save(filepath)
return True
except:
return False
结果:
3. 数据可视化
3.1 读取数据
导入以下模块:
import os
import pandas as pd
from pyecharts.charts import Bar
from pyecharts.charts import Map
from pyecharts import options as opts
用pandas模块遍历文件夹读取数据:
# 遍历scenic文件夹中的文件
def get_datas():
df_allinfo = pd.DataFrame()
for root, dirs, files in os.walk('./scenic'):
for filename in files:
try:
df = pd.read_excel(f'./scenic/{filename}')
df_allinfo = df_allinfo.append(df, ignore_index=True)
except:
continue
# 去重
df_allinfo.drop_duplicates(subset=['名称'], keep='first', inplace=True)
return df_allinfo
3.2 热门景点数据图
以门票销量前20为例:
def get_sales_bar(data):
sort_info = data.sort_values(by='销量', ascending=True)
c = (
Bar()
.add_xaxis(list(sort_info['名称'])[-20:])
.add_yaxis('热门景点销量', sort_info['销量'].values.tolist()[-20:])
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title='热门景点销量数据'),
yaxis_opts=opts.AxisOpts(name='景点名称'),
xaxis_opts=opts.AxisOpts(name='销量'),
)
.set_series_opts(label_opts=opts.LabelOpts(position="right"))
.render('1-热门景点数据.html')
)
效果:
3.3 假期出行数据地图分布图
代码:
def get_sales_geo(data):
df = data[['城市','销量']]
df_counts = df.groupby('城市').sum()
c = (
Map()
.add('假期出行分布', [list(z) for z in zip(df_counts.index.values.tolist(), df_counts.values.tolist())], 'china')
.set_global_opts(
title_opts=opts.TitleOpts(title='假期出行数据地图分布'),
visualmap_opts=opts.VisualMapOpts(max_=100000, is_piecewise=True),
)
.render('2-假期出行数据地图分布.html')
)
效果:
可以看到北京、上海、江苏、广东、四川、陕西等地出行人数相对较多。
3.4 各省市4A-5A景区数量图
代码:
def get_level_counts(data):
df = data[data['星级'].isin(['4A', '5A'])]
df_counts = df.groupby('城市').count()['星级']
c = (
Bar()
.add_xaxis(df_counts.index.values.tolist())
.add_yaxis('4A-5A景区数量', df_counts.values.tolist())
.set_global_opts(
title_opts=opts.TitleOpts(title='各省市4A-5A景区数量'),
datazoom_opts=[opts.DataZoomOpts(), opts.DataZoomOpts(type_='inside')],
)
.render('3-各省市4A-5A景区数量.html')
)
效果:
3.5 4A-5A景区数据地图分布
代码:
def get_level_geo(data):
df = data[data['星级'].isin(['4A', '5A'])]
df_counts = df.groupby('城市').count()['星级']
c = (
Map()
.add('4A-5A景区分布', [list(z) for z in zip(df_counts.index.values.tolist(), df_counts.values.tolist())], 'china')
.set_global_opts(
title_opts=opts.TitleOpts(title='地图数据分布'),
visualmap_opts=opts.VisualMapOpts(max_=50, is_piecewise=True),
)
.render('4-4A-5A景区数据地图分布.html')
)
效果:
完。
以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享让更多人知道哦
推荐阅读
基础 | Python面向对象一文详解
基础 | Python函数一文详解
技巧 | 20个Pycharm最实用最高效的快捷键(动态展示)
技巧 | Python制作朋友圈炫酷九宫格图片
爬虫 | Python送你王者荣耀官网全套皮肤
爬虫 | 一键下载N部小说,你要的免费都在这里
可视化 | Python制作最炫3D可视化地图
可视化 | 动起来的中国大学排名,看看你的母校在哪里
爬虫 | Python爬取豆瓣电影Top250 + 数据可视化
微信公众号 “Python当打之年” ,每天都有python编程技巧推送,希望大家可以喜欢