- 博客(10)
- 收藏
- 关注
转载 用户增长体系——用户分群分析
导语在产品的增长分析当中,想关注符合某些条件的一部分用户,不仅想知道这些人的整体行为(访问次数,访问时长等),还希望知道其中差异较大的细分群体。用户分群方法,能帮助我们对差异较大的群体分别进行深入分析,从而探究指标数字背后的原因,探索实现用户增长的途径。一、用户分群的应用场景在日常的数据工作中,我们经常接到这样的需求:想关注符合某些条件的一部分用户,不仅想知道这些人的整体行为(访问次数,访问时长等),还希望知道具体是哪些人符合这些条件。然后查看这些人的数据导出用户名单,针对性的发送tips消息。有时还想
2020-06-28 16:06:26 969
转载 python进行因子分析
https://www.cnblogs.com/laoketeng/p/11269178.html人工智能股票实证分析一:研究背景和意义:近几年人工智能的兴起,导致大量人工智能企业的诞生或崛起,故本文从4个维度选取15个主要财务指标对159家人工智能股票进行聚类分析和因子分析,主要将公司分成三大类和采用因子分析对目前公司进行综合排名,并对排名靠前的三只股票进行ARMA模型预测其未来一段时间的...
2020-03-24 21:23:16 5222 3
原创 Python中画条形图
seaborn画图import pandas as pdimport numpy as npimport seabornfrom matplotlib import pyplot as plta = ["战狼2","速度与激情8","功夫瑜伽","西游伏妖篇","变形金刚5:最后的骑士","摔跤吧!爸爸","加勒比海盗5:死无对证","金刚:骷髅岛","极限特工:终极回归","生化危机...
2020-03-09 16:05:10 516
转载 先验概率、后验概率以及似然函数的理解
对于统计学只是皮毛认识,在学校时根本不重视,如今机器学习几乎以统计学为基础发展起来的,头疼的紧,如今还得琢磨基础概念。1、我自己的理解:1)先验:统计历史上的经验而知当下发生的概率;2)后验:当下由因及果的概率;2、网上有个例子说的透彻:1)先验——根据若干年的统计(经验)或者气候(常识),某地方下雨的概率;2)似然——下雨(果)的时候有乌云(因/证据/观察的数据)的概率,即已经有了果...
2020-03-06 10:19:47 1005
原创 mac如何在matplotlib中显示中文
import matplotlib.pyplot as pltplt.rcParams["font.family"] = 'Arial Unicode MS'import matplotliba=sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist]) for i in a: print i...
2020-03-05 17:04:15 494
原创 python中axis=0和axis=1的问题记录
之前一直搞不清axis = 0 和 axis = 1 之间的区别,一会是按行求和,一会是按列遍历,那到底axis是咋操作的呢?查找了些资料,发现了一种很好的解释就是:0轴垂直往下,1轴向右水平延伸。啥意思??尝试一下好了tmp = np.random.randint(1,10,12).reshape(3,4)tmp#1到10随机生成12个整数,并重组成3行4列的数组array([[5...
2020-02-26 16:40:51 231
原创 吴恩达机器学习作业--多分类Logistic回归
正则化逻辑回归1、什么是正则化???尽可能保留所有特征值减小除零次项以外所有参数,假设参数索引从0开始,那么即减少θj(j≥1)\theta _j(j \geq 1)θj(j≥1)的大小通过增加损失函数中一个惩罚,正则化损失函数公式如下:J(θ)=1m∑i=1m[−y(i)log(hθ(x(i)))−(1−y(i))log(1−hθ(x(i)))]+λ2m∑j=1nθj2J...
2020-02-04 19:43:58 469
原创 吴恩达机器学习作业python实现--Logistic回归
Logistic回归–未正则化(深度之眼学习笔记)回归中用到的公式列举如下:sigmoid 函数用线性回归解决分类问题是不妥的,因此需要对其做一个转化,令:hθ(x)=g(θTX)h_\theta (x)=g(\theta^TX)hθ(x)=g(θTX)g 代表一个常用的逻辑函数(logistic function)为S形函数(Sigmoid function),公式为:g(z)=11...
2020-02-04 13:01:44 272
原创 吴恩达机器学习作业python实现--多变量线性回归
多变量线性回归(深度之眼学习笔记)代价函数J(θ)=12m∑i=1m(hθ(x(i))−y(i))2J\left( \theta \right)=\frac{1}{2m}\sum\limits_{i=1}^{m}{{{\left( {{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}} \right)}^{2}}}J(θ)=2m1i=1∑...
2020-01-23 17:15:18 828 1
原创 吴恩达机器学习作业python实现--单变量线性回归
线性回归(深度之眼学习笔记)1、单变量线性回归代价函数import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport randompath = 'ex1data1.txt'data = pd.read_csv(path, header=None, names=['Population', 'Pro...
2020-01-22 18:48:23 428
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人