最大子序和

69 篇文章 1 订阅
63 篇文章 0 订阅

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

方法一:双指针穷举法
思路:要找到最大和的连续数组,那么就将所有可能的和都拿到,取到最大的即可;
弊端:因为每次都要从开始计算和,需要时间过长,编译不通过

class Solution {
    public int maxSubArray(int[] nums) {
        //双指针穷举法
        int max = Integer.MIN_VALUE;
        int sum;
        for(int i = 0; i < nums.length; i ++) {
            for (int j = i; j < nums.length; j ++) {
                sum = 0;
                for (int k = i; k <= j; k++) 
                    sum += nums[k];
                if (sum > max)
                    max = sum;
            }
        }
        return max;
    }
}

方法二:方法一改进
思路:其实数组连续连续和,不需要每次从头计算,每次的和其实就是上次和加上下一个数而已

class Solution {
    public int maxSubArray(int[] nums) {
        //双指针穷举法
        int max = Integer.MIN_VALUE;
        int sum;
        for(int i = 0; i < nums.length; i ++) {
            sum = 0;
            for (int j = i; j < nums.length; j ++) {
                sum += nums[j];   
                if (sum > max)
                    max = sum;
            }
        }
        return max;
    }
}

方法三:扫描法
思路:
1,加上一个正数肯定结果变大,加上负数肯定结果变小;
2,如果前面连续数相加已经是负数了,那么再加上后面一个数只会让结果变小,所以就需要重新将当前连续数的起始位置定位到下一个数;
3,每次拿到连续数的和之后都和临时最大值比较,以免错过最大值!

class Solution {
    public int maxSubArray(int[] nums) {
        int maxsum=Integer.MIN_VALUE,thissum=0;
        for(int i=0;i<nums.length;i++){
            if(thissum<0)//小于0说明相加只会让和变小
                thissum=nums[i];
            else 
                thissum+=nums[i];
            if(thissum>maxsum)   
                maxsum=thissum;
        }
        return maxsum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值