给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
方法一:双指针穷举法
思路:要找到最大和的连续数组,那么就将所有可能的和都拿到,取到最大的即可;
弊端:因为每次都要从开始计算和,需要时间过长,编译不通过
class Solution {
public int maxSubArray(int[] nums) {
//双指针穷举法
int max = Integer.MIN_VALUE;
int sum;
for(int i = 0; i < nums.length; i ++) {
for (int j = i; j < nums.length; j ++) {
sum = 0;
for (int k = i; k <= j; k++)
sum += nums[k];
if (sum > max)
max = sum;
}
}
return max;
}
}
方法二:方法一改进
思路:其实数组连续连续和,不需要每次从头计算,每次的和其实就是上次和加上下一个数而已
class Solution {
public int maxSubArray(int[] nums) {
//双指针穷举法
int max = Integer.MIN_VALUE;
int sum;
for(int i = 0; i < nums.length; i ++) {
sum = 0;
for (int j = i; j < nums.length; j ++) {
sum += nums[j];
if (sum > max)
max = sum;
}
}
return max;
}
}
方法三:扫描法
思路:
1,加上一个正数肯定结果变大,加上负数肯定结果变小;
2,如果前面连续数相加已经是负数了,那么再加上后面一个数只会让结果变小,所以就需要重新将当前连续数的起始位置定位到下一个数;
3,每次拿到连续数的和之后都和临时最大值比较,以免错过最大值!
class Solution {
public int maxSubArray(int[] nums) {
int maxsum=Integer.MIN_VALUE,thissum=0;
for(int i=0;i<nums.length;i++){
if(thissum<0)//小于0说明相加只会让和变小
thissum=nums[i];
else
thissum+=nums[i];
if(thissum>maxsum)
maxsum=thissum;
}
return maxsum;
}
}