计算矢量面积_矢量及其基本运算

本文介绍了矢量的基本运算,包括矢量加减法、点乘与叉乘,并深入探讨了矢量的三重积。重点讲解了叉乘的几何意义——代表有方向的平行四边形面积,以及在物理中的应用,如力矩和角动量。同时提到了三重积在计算平行六面体体积中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fe4bff1695b76495640bc6e24fefe3e4.gif

前言

从初中一直到大学,我们在物理中都会与一类既有大小又有方向的物理量打交道,一般称其为矢量。矢量这样定义,在物理上完全没有问题,但为了使矢量的应用更加广泛,对于矢量还可以这样定义——矢量为有序、独立的n个数。在矢量的学习与应用中,应当特别注意其几何与物理含义。在此特别向各位推荐西安电子科技大学梁昌洪教授的《场论与复变函数》MOOC课程(这应该是我听过的最好的有关矢量分析与复变函数的课程)。

c9b61a9ca57b20e9a306abbf918c6d51.png
网址: https://www.bilibili.com/video/av18389239/

本文主要介绍了矢量的基本运算,包括矢量的加减、点乘与叉乘,重点放在了矢量的叉乘上。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值