均值定理四个公式_柯西-古萨定理

定理1 (古萨定理). 设

中的一个开集,
是一个三角形并且它的内部也包含于
, 那么

其中

中的全纯函数.

证明. 将初始的三角形记作

(它具有固定的定向, 这里我们选正定向), 它的直径和周长并分别记作
. 证明的第一步是将该三角形的每一边二等分并将中点连起来. 这样就得到四个与原三角形相似的小三角形, 记作
. 构造的过程以及每个小三角形的定向如图1所示. 定向的选择与原三角形一致, 因此, 将沿同一边不同方向的积分抵消之后, 我们得到

(1)

对某个

必然有

0580f533727b89fcaa7c5b9362000bd7.png

否则的话将与(1)矛盾. 选取一个满足这一不等式的三角形, 并将它重命名为

. 注意, 如果
分别表示
的直径和周长, 那么
并且
. 现在我们对三角形
重复这一过程, 将它对分为更小的四个三角形. 继续这一过程, 我们将得到一系列三角形

它们满足性质

其中

分别表示
的直径和周长. 用
表示以
为边界的实心闭三角形, 并注意到我们的构造过程产生了一嵌套紧致序列

它的直径趋于

. 根据闭区间套定理的二维推广, 存在唯一点
使得它属于每一个实心三角形
. 由于
在点
是全纯的, 我们可以将它写成

其中当

. 由于常数
和线性函数
具有原函数, 因此它们沿闭曲线
的积分为零, 这样的话将上面的等式积分得到

(2)

现在

属于实心三角形
的闭包并且
属于它的边界, 所以必然有
, 利用(2)就得到估计

其中当

. 因此

由此得到我们的最终估计

, 考虑到
, 定理的证明就完成了.

推论2.

是开集
内的全纯函数, 并且该开集包含矩形
及其内部, 则

证明. 这是显然的. 我们选取一个如图2所示的定向并注意到

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值