定理1 (古萨定理). 设
![]()
是
![]()
中的一个开集,
![]()
是一个三角形并且它的内部也包含于
![]()
, 那么
其中
![]()
是
![]()
中的全纯函数.
证明. 将初始的三角形记作
![]()
(它具有固定的定向, 这里我们选正定向), 它的直径和周长并分别记作
![]()
和
![]()
. 证明的第一步是将该三角形的每一边二等分并将中点连起来. 这样就得到四个与原三角形相似的小三角形, 记作
![]()
和
![]()
. 构造的过程以及每个小三角形的定向如图1所示. 定向的选择与原三角形一致, 因此, 将沿同一边不同方向的积分抵消之后, 我们得到
![]()
(1)
对某个
![]()
必然有
否则的话将与(1)矛盾. 选取一个满足这一不等式的三角形, 并将它重命名为
![]()
. 注意, 如果
![]()
和
![]()
分别表示
![]()
的直径和周长, 那么
![]()
并且
![]()
. 现在我们对三角形
![]()
重复这一过程, 将它对分为更小的四个三角形. 继续这一过程, 我们将得到一系列三角形
它们满足性质
和
其中
![]()
和
![]()
分别表示
![]()
的直径和周长. 用
![]()
表示以
![]()
为边界的实心闭三角形, 并注意到我们的构造过程产生了一嵌套紧致序列
它的直径趋于
![]()
. 根据闭区间套定理的二维推广, 存在唯一点
![]()
使得它属于每一个实心三角形
![]()
. 由于
![]()
在点
![]()
是全纯的, 我们可以将它写成
其中当
![]()
时
![]()
. 由于常数
![]()
和线性函数
![]()
具有原函数, 因此它们沿闭曲线
![]()
的积分为零, 这样的话将上面的等式积分得到
![]()
(2)
现在
![]()
属于实心三角形
![]()
的闭包并且
![]()
属于它的边界, 所以必然有
![]()
, 利用(2)就得到估计
其中当
![]()
时
![]()
. 因此
由此得到我们的最终估计
令
![]()
, 考虑到
![]()
, 定理的证明就完成了.
推论2. 设
![]()
是开集
![]()
内的全纯函数, 并且该开集包含矩形
![]()
及其内部, 则
证明. 这是显然的. 我们选取一个如图2所示的定向并注意到
定理3(原函数的局部存在性). 一个开圆盘内的全纯函数在那个圆盘内有原函数.
证明. 通过平移, 不失一般性我们可以假设该圆盘, 譬如说
![]()
, 中心位于原点. 给定一点
![]()
, 先沿水平方向由
![]()
运动到
![]()
, 然后竖直方向由
![]()
运动到
![]()
将得到一条分段光滑曲线. 选择由
![]()
到
![]()
的定向并将该折线记作
![]()
(它最多包含两条线段), 如图3所示.
定义
从
![]()
的选择可以看出函数
![]()
的定义是明确的. 我们断言
![]()
是
![]()
内的全纯函数并且
![]()
. 为了证明这一结论, 固定
![]()
并选取充分小的
![]()
使得
![]()
也属于该圆盘. 现在考虑差分
函数
![]()
首先沿
![]()
的原始定向积分, 然后沿
![]()
的反向积分(因为第二个积分前面有个负号). 这对应于图4中的(a). 由于我们将
![]()
沿连接原点的线段的两个不同方向积分, 它们相互抵消, 因此剩下(b)中的轮廓. 然后, 如图(c)所示那样补全矩形和三角形, 之后利用关于三角形和矩形的古萨定理就剩下(d)中所示的由
![]()
到
![]()
的直线段.
因此通过上面的对消我们得到
其中
![]()
是连接
![]()
和
![]()
的直线段. 由于
![]()
在
![]()
点连续, 我们有
其中当
![]()
时
![]()
. 因此
![]()
(3)
一方面, 常数
![]()
具有原函数
![]()
, 所以第一个积分就是
![]()
. 另一方面, 我们有如下估计:
当
![]()
趋于
![]()
时, 上式中的上界也趋于零, 因此由(3)我们得到
这就证明了在该圆盘内
![]()
是
![]()
的原函数.
定理4 (圆盘的柯西定理). 设
![]()
是某圆盘内的全纯函数, 则对于该圆盘内的任意闭曲线
![]()
有
证明. 因为
![]()
在该圆盘内有原函数.
定理5(柯西积分公式). 假设
![]()
是某个开集内的全纯函数, 该开集包含圆盘
![]()
的闭包. 若
![]()
表示圆盘
![]()
的边界且具有正的定向, 则
证明. 固定
![]()
并考虑如图5所示挖掉
![]()
点的``钥匙孔''
![]()
.
这里
![]()
是狭缝的宽度, 而
![]()
是中心位于
![]()
点的小圆的半径. 由于函数
![]()
在除点
![]()
以外的其它地方是全纯的, 因此, 根据关于简单轮廓(toy contour)的柯西定理有
现在, 通过令
![]()
趋于
![]()
使得狭缝变得更窄, 然后利用
![]()
的连续性我们看到, 在极限的情况下狭缝两边上的积分相互抵消. 剩下的部分由两个圆构成, 其中大的边界圆
![]()
具有正的定向, 而中心位于
![]()
半径为
![]()
的小圆
![]()
具有负的定向, 即顺时针. 为了了解这个小圆上积分的具体情况, 我们将
![]()
写成
![]()
(4)
并注意到由于
![]()
是全纯的, 所以(4)式右边的第一项是有界的, 因此当
![]()
时它在
![]()
上的积分趋于
![]()
. 为了完成证明, 我们只需注意到
所以在极限的情况下我们发现
如所求.
推论6. 若
![]()
是某个开集
![]()
内的全纯函数, 那么
![]()
在
![]()
内具有无穷阶复导数. 此外, 若
![]()
是一个圆并且它的内部也包含于
![]()
, 则
对所有位于
![]()
内部的点
![]()
成立.
证明. 对
![]()
进行归纳,
![]()
的情形就是柯西积分公式. 假设
![]()
具有直到
![]()
阶的复导数并且
现在, 对于小的
![]()
,
![]()
的差商具有如下形式
![]()
(5)
回忆
令
![]()
以及
![]()
, 我们看到式(5)括号中的项等于
注意到若
![]()
很小, 则
![]()
和
![]()
离边界圆
![]()
具有有限的距离, 因此在
![]()
趋于
![]()
的极限情况下, 我们发现上面的差商收敛到
这就完成了归纳法的论证从而证明了定理.
推论7(柯西不等式). 若
![]()
是某个开集内的全纯函数, 并且该开集包含中心位于
![]()
半径为
![]()
的圆盘
![]()
的闭包, 则
其中
![]()
表示
![]()
在边界圆
![]()
上的上确界.
证明. 对
![]()
应用柯西积分公式得到
定理8. 假设
![]()
是某个开集
![]()
内的全纯函数. 若
![]()
是中心位于
![]()
的圆盘并且它的闭包包含于
![]()
, 那么对所有
![]()
,
![]()
在
![]()
处有级数展开
并且系数由下式给出:
证明. 固定
![]()
. 由柯西积分公式我们有
![]()
(6)
其中
![]()
表示圆盘的边界并且
![]()
. 我们的想法是将
![]()
写成
![]()
(7)
并利用几何级数展开. 由于
![]()
并且
![]()
固定, 因此存在
![]()
使得
于是
![]()
(8)
并且该级数对
![]()
一致收敛. 这使得我们可以交换无穷和以及积分号的次序, 结合(6), (7)和(8)得到
这就完成了级数展开的证明. 此外, 利用关于导数的柯西积分公式就证明了
![]()
的公式.
推论9 (刘维尔定理). 若
![]()
是整函数并且是有界的, 则
![]()
是常数.
证明. 由于
![]()
是连通的, 因此只需证明
![]()
即可.
对每一个
![]()
以及所有
![]()
, 柯西不等式蕴含
其中
![]()
是
![]()
的一个界. 令
![]()
就得到所需的结论.
推论10 (代数基本定理). 每一个具有复系数的非常值多项式
![]()
在
![]()
中有根.
证明. 若
![]()
没有根, 则
![]()
是有界的全纯函数. 要了解这一点, 我们当然可以假设
![]()
, 那么当
![]()
时有
当
![]()
时括号中的项趋于
![]()
, 所以我们断定存在
![]()
使得若
![]()
, 则
特别地, 当
![]()
时
![]()
有下界. 由于
![]()
是连续的并且在圆盘
![]()
中无根, 因此它在该圆盘中也有下界, 这就证明了我们的断言.
根据刘维尔定理我们得出结论,
![]()
是常数. 这与我们的假设
![]()
非常值矛盾, 这就完成了推论的证明.
推论11(代数基本定理). 每一个阶
![]()
的多项式
![]()
在
![]()
中恰好有
![]()
个根. 若把这些根记作
![]()
, 则
![]()
可以分解为
证明. 根据前面的结论
![]()
有一个根, 譬如说
![]()
. 将
![]()
写成
![]()
并代入
![]()
, 然后利用二项公式我们得到
其中
![]()
是新的系数, 并且
![]()
. 由于
![]()
, 我们发现
![]()
, 因此
其中
![]()
是
![]()
阶多项式. 通过对多项式的阶进行归纳, 我们得出结论,
![]()
有
![]()
个根并且对某个
![]()
可以表示成
将右侧展开我们发现
![]()
的系数是
![]()
, 因此
![]()
.
定理12. 假设
![]()
是区域
![]()
中的全纯函数并且对于一列极限点位于
![]()
的不同点序列退化, 则
![]()
恒等于
![]()
.
证明. 假设
![]()
是序列
![]()
的一个极限点并且
![]()
. 首先我们证明
![]()
在包含
![]()
的一个小圆盘内恒等于零. 为此, 我们选取一中心位于
![]()
并且包含于
![]()
的圆盘, 并考虑
![]()
在该圆盘内的幂级数展开
若
![]()
不恒等于零, 则存在一个最小的整数
![]()
使得
![]()
. 但这样的话
![]()
可以写成
其中当
![]()
时
![]()
收敛到
![]()
. 取
![]()
为一列收敛到
![]()
的点, 我们就得出矛盾, 因为
![]()
并且
![]()
, 但是
![]()
.
我们利用
![]()
连通这一事实来完成定理的证明. 令
![]()
表示满足
![]()
的点构成的集合的内部. 则由定义
![]()
是开的, 并且根据刚刚的证明是非空的. 集合
![]()
也是闭的. 因为根据连续性, 若
![]()
并且
![]()
, 则
![]()
. 此外根据上面的证明
![]()
在
![]()
的某个邻域内为零, 因此
![]()
. 现在, 若用
![]()
表示
![]()
在
![]()
中的补, 那么
![]()
和
![]()
都是开的, 并且不相交. 此外
由于
![]()
是连通的, 因此
![]()
或
![]()
至少有一个是空集. 由于
![]()
非空, 所以
![]()
为空集, 从而
![]()
, 这就完成了定理的证明.
推论. 假设
![]()
和
![]()
是区域
![]()
内的全纯函数并且对
![]()
的某个开子集内的所有
![]()
(或者更一般地, 对一列极限点位于
![]()
的不同点序列中的
![]()
)都有
![]()
. 则
![]()
在整个
![]()
内成立.