代码随想录day7 哈希表
目录
454、四数相加
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -2^28 到 2^28 - 1 之间,最终结果不会超过 2^31 - 1 。
例如: 输入: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2]
输出: 2
解释: 两个元组如下:
(0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
(1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
思路:
本题咋眼一看好像和0015.三数之和 、0018.四数之和差不多,其实差很多。本题是使用哈希法的经典题目,而0015.三数之和、0018.四数之和 并不合适使用哈希法,因为三数之和和四数之和这两道题目使用哈希法在不超时的情况下做到对结果去重是很困难的,很有多细节需要处理。
而这道题目是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于题目18. 四数之和,题目15.三数之和,还是简单了不少!
本题解题步骤:
- 首先定义 一个map,key放a和b两数之和,value 放a和b两数之和出现的次数。
- 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
- 定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
- 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
- 最后返回统计值 count 就可以了
// 普通for循环
func fourSumCount(nums1 []int, nums2 []int, nums3 []int, nums4 []int) int {
a_map := make(map[int]int,0) //步骤1
count := 0 //步骤3 计算a+b+c+d == 0 的次数
//将a和b数组的各自一位数字组合起来的都计算一下。
for i:=0;i<len(nums1);i++{ //步骤2
for j:=0;j<len(nums2);j++{
a_map[nums1[i] + nums2[j]] += 1
}
}
//如果-c-d都存在,那么说明c和d的组合和a、b组合相加会等于0。
for i:=0;i<len(nums3);i++{ //步骤4
for j:=0;j<len(nums4);j++{
count += a_map[-nums3[i]-nums4[j]] // 看看-c-d有多少个存在,全都累加
}
}
return count //步骤5
}
//for range循环
func fourSumCount(nums1 []int, nums2 []int, nums3 []int, nums4 []int) int {
a_map := make(map[int]int,0)
count := 0 //计算a+b+c+d == 0 的次数
for _, v1 := range nums1 {
for _, v2 := range nums2 {
a_map[v1+v2]++
}
}
for _, v3 := range nums3 {
for _, v4 := range nums4 {
count += a_map[-v3-v4]
}
}
return count
}
383、赎金信
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。magazine 中的每个字符只能在 ransomNote 中使用一次。
示例 1:
输入:ransomNote = "a", magazine = "b"
输出:false
示例 2:
输入:ransomNote = "aa", magazine = "ab"
输出:false
示例 3:
输入:ransomNote = "aa", magazine = "aab"
输出:true
思路:
这道题和day6 第一题 242.有效的字母异位词 基本一样捏。242是判断两个字符串用的字母数量、类别是不是一样,这道题也差不多啊。这道题是让你查看b字符串的字母是不是都来自于a。办法就是用数组/map记录下a的字母,然后遍历b的时候看看b的字母是否在数组/map中存在,不管存不存在都进行--。如果数组/map 减完之后值小于0了,说明b中存在一些字母,是a没有的,或者数量大于a的。
1、新建一个[26]array或者map。用来存放magazine。
2、遍历magazine,将其所有值放进 array/map作为下标/key
3、遍历ransomNote,看看array/map中的下标/key是否存在,每次查一次减减一,当array/map的值小于0,说明不符合了,返回false。
4、否则最后返回true。
func canConstruct(ransomNote string, magazine string) bool {
a_map := make(map[rune]int,0) //步骤1
for _, v := range magazine { //步骤2
a_map[v - 'a']++
}
for _,v := range ransomNote { //步骤3
a_map[v - 'a']--
if a_map[v - 'a'] < 0 {
return false
}
}
return true //步骤4
}
func canConstruct(ransomNote string, magazine string) bool {
array := [26]int{}
for i:=0;i<len(magazine);i++{
array[magazine[i] - 'a']++
}
for i:=0;i<len(ransomNote);i++{
array[ransomNote[i] - 'a']--
if array[ransomNote[i] - 'a'] < 0 {
return false
}
}
return true
}
15、三数之和
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意: 答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4], 满足要求的三元组集合为:[[-1, 0, 1],[-1, -1, 2]]
思路:
双指针解法:
其实这道题目使用哈希法并不十分合适,因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。
而且使用哈希法 在使用两层for循环的时候,能做的剪枝操作很有限,虽然时间复杂度是O(n^2),也是可以在leetcode上通过,但是程序的执行时间依然比较长 。
接下来我来介绍另一个解法:双指针法,这道题目使用双指针法 要比哈希法高效一些,那么来讲解一下具体实现的思路。
拿nums数组来举例,首先将数组排序(排序了好做,不排序有你难受的时候),然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。
依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。
接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。
如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
时间复杂度:O(n^2)。
func threeSum(nums []int) [][]int {
sort.Ints(nums) //先排序再说。别问为什么。
res := [][]int{}
for i:=0;i<len(nums)-2;i++{ //-2是因为要给left和right各自一个位置。
a := nums[i]
if a > 0 { // 排序后的第一个值还大于0,后面肯定都大于0,还玩屁
return res
}
//对a进行去重
if i > 0 && a == nums[i-1] { //题目要求的是不可以重复的三元组abc。不能多次一样的a。
continue
}
left, right := i+1, len(nums)-1 //定义left和right指针
for left < right { //当然不可能<=啊。他俩不会一起取到的对吗?自己想想
b := nums[left]
c := nums[right]
if a + b + c == 0 { //当找到一个组合符合条件
res = append(res, []int{a, b, c}) //当然是先保存起来
for left < right && nums[left] == b { //此时要进行去重。
left++
}
for left < right && nums[right] == c { //此时要进行去重
right--
}
} else if a + b + c < 0 { // 扩大区间,才可能找到符合==0的
left++
} else if a + b + c > 0 { // 缩小区间,才可能找到符合==0的
right--
}
}
}
return res
}
18、四数之和
给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。
注意:答案中不可以包含重复的四元组。
输入:nums = [2,2,2,2,2], target = 8 输出:[[2,2,2,2]]
思路:
这道题其实和15.三数之和几乎一样。就是0变成target了,然后多了一层for循环罢了,纸老虎捏。一百之和也一样的。
四数之和,和15.三数之和 是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 的基础上再套一层for循环。
但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。
15.三数之和的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。
那么一样的道理,五数之和、六数之和等等都采用这种解法。对于15.三数之和双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
之前我们讲过哈希表的经典题目:454.四数相加II,相对于本题简单很多,因为本题是要求在一个集合中找出四个数相加等于target,同时四元组不能重复。而454.四数相加II 是四个独立的数组,只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况,所以相对于本题还是简单了不少!
func fourSum(nums []int, target int) [][]int {
if len(nums) < 4 {
return nil
}
sort.Ints(nums)
res := [][]int{}
for i:=0;i<len(nums)-3;i++{ //因为要留给里面三个位置捏
a := nums[i]
if i > 0 && a == nums[i-1] {
continue // 对a去重捏
}
for j:=i+1;j<len(nums)-2;j++{ // 要留2个给left和right指针
b := nums[j]
if j > i+1 && b == nums[j-1] {
continue
}
left, right := j+1, len(nums)-1 // 定义left和right指针
for left < right { // 不会取相等,懂得都懂
c := nums[left]
d := nums[right]
if a + b + c +d == target { //找到一组等于target的,当然要马上保存起来
res = append(res, []int{a,b,c,d})
for left < right && nums[left] == c { // 去重
left++
}
for left < right && nums[right] == d { // 去重
right--
}
} else if a + b + c + d < target { // 扩大区间,向target进攻
left++
} else if a + b + c + d > target { // 缩小区间,向target进攻
right--
}
}
}
}
return res
}
小结
1、四数相加:只要找到A[i] + B[j] + C[k] + D[l] = 0就可以,不用考虑有重复的四个元素相加等于0的情况。首先定义 一个map,key放a和b两数之和,value 放a和b两数之和出现的次数。遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。定义int变量count,用来统计 a+b+c+d = 0 出现的次数。在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。最后返回统计值 count 就可以了
2、赎金信,这道题和day6 第一题 242.有效的字母异位词 基本一样捏。242是判断两个字符串用的字母数量、类别是不是一样,这道题也差不多啊。这道题是让你查看b字符串的字母是不是都来自于a。办法就是用数组/map记录下a的字母,然后遍历b的时候看看b的字母是否在数组/map中存在,不管存不存在都进行--。如果数组/map 减完之后值小于0了,说明b中存在一些字母,是a没有的,或者数量大于a的。
3、三数之和。其实这道题目使用哈希法并不十分合适(当x>2,x数之和都不合适),因为在去重的操作中有很多细节需要注意,在面试中很难直接写出没有bug的代码。拿nums数组来举例,首先将数组排序(排序了好做,不排序有你难受的时候),然后有一层for循环,i从下标0的地方开始,同时定一个下标left 定义在i+1的位置上,定义下标right 在数组结尾的位置上。依然还是在数组中找到 abc 使得a + b +c =0,我们这里相当于 a = nums[i],b = nums[left],c = nums[right]。接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。如果 nums[i] + nums[left] + nums[right] < 0 说明 此时 三数之和小了,left 就向右移动,才能让三数之和大一些,直到left与right相遇为止。
4、四数之和。这道题和三数之和是很相似的。包括之后的5、6、N数之和都一个套路。这道题其实和15.三数之和几乎一样。就是0变成target了,然后多了一层for循环罢了,纸老虎捏。一百之和也一样的。四数之和,和15.三数之和 是一个思路,都是使用双指针法, 基本解法就是在15.三数之和 的基础上再套一层for循环。但是有一些细节需要注意,例如: 不要判断nums[k] > target 就返回了,三数之和 可以通过 nums[i] > 0 就返回了,因为 0 已经是确定的数了,四数之和这道题目 target是任意值。比如:数组是[-4, -3, -2, -1],target是-10,不能因为-4 > -10而跳过。但是我们依旧可以去做剪枝,逻辑变成nums[i] > target && (nums[i] >=0 || target >= 0)就可以了。15.三数之和的双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n^2),四数之和的时间复杂度是O(n^3) 。那么一样的道理,五数之和、六数之和等等都采用这种解法。对于15.三数之和双指针法就是将原本暴力O(n^3)的解法,降为O(n^2)的解法,四数之和的双指针解法就是将原本暴力O(n^4)的解法,降为O(n^3)的解法。
5、以上。感谢观看,内容大多来自代码随想录。