代码随想录day25|216.组合总和III|17.电话号码的字母组合|Golang

代码随想录day25

目录

216.组合总和III

17.电话号码的字母组合


216.组合总和III

        找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:

只使用数字1到9

每个数字 最多使用一次

输入: k = 3, n = 7

输出: [[1,2,4]]

解释: 1 + 2 + 4 = 7 没有其他符合的组合了。

        本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。本题宽相当于1、2、3、4、5、6、7、8、9。 深度相当于k

        找出在宽度内深度为k且之和等于n的组合。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9] 中求 个数(k) = 2,   和(n)= 4的组合。

图中,可以看出,只有最后取到集合(1,3)和为4 符合条件。

回溯三部曲来咯

1、确定递归参数:

/*  
1、确定递归函数参数
targetSum也就是题目要求的n
k也就是题目要求的k个数的集合
path_sum 也就是path上存放的元素的和
startindex为下一层for循环搜索的起始位置
*/
var path []int
var result [][]int
func backtrack(target, k, path_sum, startindex int){
}
//还要强调一下,回溯法中递归函数参数很难一次性确定下来,一般先写逻辑,需要啥参数了,填什么参数。

2、确定终止条件:

/*
2、确定终止条件
终止条件就是len(path) == k,因为再往下没意义的。
如果此时path里面收集到的元素和path_sum == targetSum了(题目要求的n),那么就把path放进result里面。
*/
if len(path) == k {
  if path_sum == targetSum {
    tmp := make([]int,k)
    copy(tmp, path)
    result = append(result, tmp)
    return
  }
}

3、单层搜索过程:

/*
3、单层搜索过程
本题和77组合的区别之一就是集合固定为9个数字[1,2,3,4,5,6,7,8,9],所以for循环<=9。
处理过程就是path收集选取的元素,相当于树形结构的边,path_sum用来统计path里面的元素之和。
*/
for i:=startindex;i<=9;i++{
  path = append(path,i)
  path_sum += i 
  backtrack(targetSum, k, path_sum, i+1)
  path_sum -=i  //记得回溯撤销
  path = path[:len(path)-1] //记得回溯撤销
}
​
//别忘了处理过程 和 回溯过程是一一对应的,处理有加,回溯就要有减!

不难写出如下Go代码:

//总的代码,未剪枝前
var path []int
var result [][]int
func combinationSum3(k int, n int) [][]int {
    result = [][]int{}
    backtrack(n,k,0, 1)
    return result
}
func backtrack(target_sum, k, path_sum, startIndex int) {
    if len(path) == k {
        if path_sum == target_sum {
            temp := make([]int, k)
            copy(temp, path)
            result = append(result, temp)
            return 
        }
    }
    for i:=startIndex;i<=9;i++{
        path = append(path, i)
        path_sum += i 
        backtrack(target_sum, k, path_sum,i+1)
        path_sum -= i
        path = path[:len(path)-1]
    }
}
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。

剪枝

        这道题目,剪枝操作其实是很容易想到了,想必大家看上面的树形图的时候已经想到了。

如图:

         已选元素总和如果已经大于n(图中数值为4)了,那么往后遍历就没有意义了,直接剪掉。

那么剪枝的地方一定是在递归终止的地方剪,剪枝代码如下:

if path_sum > targetSum { 
    return 
}

回溯算法:组合问题再剪剪枝

一样,for循环的范围也可以剪枝,i <= 9 - (k - path.size()) + 1就可以了。

最后Go代码如下:

 

 

 

//总的代码
//总的代码
var path []int
var result [][]int
func combinationSum3(k int, n int) [][]int {
    result = [][]int{}
    backtrack(n,k,0, 1)
    return result
}
func backtrack(target_sum, k, path_sum, startIndex int) {
    if path_sum > target_sum {
        return 
    }
    if len(path) == k {
        if path_sum == target_sum {
            temp := make([]int, k)
            copy(temp, path)
            result = append(result, temp)
            return 
        }
    }
    for i:=startIndex;i<=9-(k-len(path))+1;i++{
        path = append(path, i)
        path_sum += i 
        backtrack(target_sum, k, path_sum,i+1)
        path_sum -= i
        path = path[:len(path)-1]
    }
}
    // targetSum:目标和,也就是题目中的n。
    // k:题目中要求k个数的集合。
    // sum:已经收集的元素的总和,也就是path里元素的总和。
    // startIndex:下一层for循环搜索的起始位置。

        开篇就介绍了本题与77.组合的区别,相对来说加了元素总和的限制,如果做完77.组合

再做本题在合适不过。

        分析完区别,依然把问题抽象为树形结构,按照回溯三部曲进行讲解,最后给出剪枝的优化。相信做完本题,大家对组合问题应该有初步了解了。

17.电话号码的字母组合

        给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。

        给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。

 示例 1:

输入:digits = "23"

输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]

说明:尽管上面的答案是按字典序排列的,但是你可以任意选择答案输出的顺序。 ​

示例 2:

输入:digits = ""

输出:[] ​

示例 3:

输入:digits = "2"

输出:["a","b","c"]

        从示例上来说,输入"23",最直接的想法就是两层for循环遍历了吧,正好把组合的情况都输出了。

        如果输入"233"呢,那么就三层for循环,如果"2333"呢,就四层for循环.......

        应该感觉出和[77.组合遇到的一样的问题,就是这for循环的层数如何写出来,此时又是回溯法登场的时候了。

理解本题后,要解决如下三个问题:

  1. 数字和字母如何映射
  2. 两个字母就两个for循环,三个字符我就三个for循环,以此类推,然后发现代码根本写不出来
  3. 输入1 * #按键等等异常情况
//1.数字和字母如何映射
可以使用map或者定义一个数组来映射。这里用数组。
yingshe := []string{"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"}

        利用回溯法来解决n个for循环的问题。例如输入:“23”,抽象为树形结构,如图所示:

先按2(abc),再按3(def)。 长度为2哦

        图中可以看出遍历的深度,就是输入"23"的长度,而叶子节点就是我们要收集的结果,输出["ad", "ae", "af", "bd", "be", "bf", "cd", "ce", "cf"]。

回溯三部曲!

1、确定回溯函数参数:

//回溯三部曲
1、确定回溯函数参数
首先需要一个path来收集叶子节点的结果,然后用result把所有path保存起来。
再来看看参数,参数指定是有题目中给的string digits,也就是给定的数字,只不过他是给的string类型的数字,反正给的数字有对应的字符串。然后需要用deep_index,用来记录遍历第几个数了,也就是遍历深度,也就是遍历题目要求的digits(字符串的数字)。
var path []int
var result [][]int
func backtracking(digits string, deep_index int, yingshe []string, path []byte ) {
}

2、递归终止条件:

2、确定终止条件
例如输入用例“23”,共两个数,那么根节点往下递归两层就可以了。叶子节点path就是要收集的结果集。那么终止条件就是如果deep_index == len(digits)输入的数字个数。就可以了。然后收集结果,结束本层递归。
if deep_index == len(digits) {
  tmp := make([]int,len(digits))
  copy(tmp, path)
  result = append(result, tmp)
  return
}

3、确定单层递归逻辑:

3、确定单层遍历逻辑
首先要取index指向的数字,并找到对应的字符集(数字对应的字母集),然后用for循环来处理这个数据集。
digit = digits[index] - '0'
letters := yingshe[digit]   //单个数字对应的字母集
for i:=0;<len(letters);i++{
  path = append(path,letters[i])  //把数字对应的字母集加入
  backtrack(digits, deep_index+1) //递归,注意这里的deep_index是用来遍历深度的。
  path = pat[:len(path)-1]  //回溯撤销
}



  注意这里for循环,可不像是在回溯算法:求组合问题!和回溯算法:求组合和!中从startIndex开始遍历的。
因为本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而77. 组合和216.组合总和III都是是求同一个集合中的组合!
  注意:输入1 * #按键等等异常情况
  代码中最好考虑这些异常情况,但题目的测试数据中应该没有异常情况的数据,所以我就没有加了。但是要知道会有这些异常,如果是现场面试中,一定要考虑到!

所以总的代码如下:

var result []string
var path []byte
func letterCombinations(digits string) []string {
    result = []string{}
    if len(digits) == 0 {
        return result
    }
    yingshe := []string{"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"}

    backtracking(digits, 0, yingshe, path )
    return result
}

func backtracking(digits string, deep_index int, yingshe []string, path []byte ) {
    if deep_index == len(digits) {
        result = append(result, string(path))
        return
    }

    digit := digits[deep_index] - '0'   // 例如字符'2'的ascii码是50,字符'0'的ascii码是48。不减会越界的导致panic的。
    letters := yingshe[digit]
    for i := 0; i < len(letters); i++ {
        path = append(path, letters[i])
        backtracking(digits, deep_index+1, yingshe, path)
        path = path[:len(path) - 1]
    }
}

以上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值