美赛模型的Python与MATLAB编程实现

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本资源深入探讨了使用Python和MATLAB进行数学建模的过程,尤其侧重于美国数学建模竞赛中的模型构建和代码实现。涵盖模型选择、数据预处理、模型评估以及结果解释等方面,提供了完整的数学建模解决方案和详细的代码实现,对提升建模和编程技能有实际帮助。 美赛模型与代码实现,基于python和MATLAB.zip

1. 美国数学建模竞赛(美赛)

美国数学建模竞赛(MCM/ICM),通常称为美赛,是一项面向全世界大学生的学术竞赛。它始于1985年,由美国数学及其应用联合会(COMAP)主办,旨在培养学生的创新思维和解决实际问题的能力。美赛以其高度的开放性和挑战性吸引了全球众多高校参与,已成为全球最具影响力的数学建模竞赛之一。

在美赛中,参赛队伍需在限定时间内选择并解决一个与现实世界相关的复杂问题,问题通常涉及自然科学、工程技术、社会科学、商业和经济等多个领域。挑战不仅在于数学建模的准确性,还包括应用软件进行数据分析、模型求解和结果验证,以及撰写英文报告的能力。因此,美赛不仅考察学生的数理逻辑能力,更重视其综合应用能力和创新性思维。

美赛的目标是通过团队合作解决开放性问题,鼓励学生运用数学知识和计算机技术,通过分析、建模、求解和验证的全过程,以达到创新研究与实践应用的结合。美赛的历届题目灵活多变,涉及诸多领域,为学生提供了丰富的研究素材和挑战空间。参与美赛,不仅仅是解决一个具体问题,更是对未来学术研究和职业生涯的有益投资。

2. 数学建模概念与过程

2.1 数学建模的定义与重要性

2.1.1 数学建模的概念框架

数学建模是一种通过抽象、简化和概括实际问题来构建数学模型的过程,它使复杂问题的分析和求解变得可能。数学模型可以用多种数学工具来表示,如方程、不等式、图表、概率分布等。模型能够帮助我们理解系统行为、预测未来发展趋势、优化决策过程以及解释复杂现象。在实际应用中,数学建模可用于经济学、工程学、物理学、生物学、社会学等多个领域,是科学技术研究和工程实践中的重要工具。

2.1.2 数学建模在实际中的应用

数学模型被广泛应用于市场分析、交通流量预测、天气预报、疾病传播控制、环境影响评估、金融风险管理等方面。例如,在金融市场中,数学模型可以帮助投资者进行资产配置、风险评估和定价策略;在环境科学中,模型可以模拟污染物的扩散路径,评估环境政策的影响;在医疗领域,模型可以帮助优化治疗方案,预测疾病发展趋势。

2.2 数学建模的基本步骤

2.2.1 问题的提出与理解

在进行数学建模之前,明确问题的本质是至关重要的。这需要对问题进行深入的分析,确定问题的关键变量和参数,并理解它们之间的关系。问题的提出与理解过程通常包括收集背景资料、定义目标和限制条件、以及对问题进行初步的数学描述。例如,在面对一项关于交通拥堵的建模任务时,我们需要弄清楚交通流量、道路容量、驾驶行为和交通控制策略等因素之间的相互作用。

graph LR
A[收集背景资料] --> B[定义目标和限制条件]
B --> C[初步数学描述]
C --> D[问题的理解与提出]

2.2.2 模型的假设与构建

根据问题的理解,模型构建者需要提出一系列合理的假设来简化问题。这些假设应当尽可能接近实际情况,同时保证模型的可解性。构建模型时,可以采用流程图、框图或数学方程来表示系统的结构和行为。构建阶段通常包括对系统进行定量分析,形式化模型结构,定义变量和参数,以及建立数学关系。

2.2.3 模型的求解与分析

求解数学模型需要应用适当的数学和计算方法。这可能包括解析方法,如代数求解、微分方程求解等,也可能涉及数值分析方法,如迭代算法、优化算法等。求解过程通常需要借助计算机工具,如MATLAB、Python等编程语言。模型求解之后,要对结果进行分析,确认模型的合理性和预测的准确性。

2.2.4 结果的检验与解释

模型结果的检验是通过与现实世界数据的对比来完成的,这包括模型验证和模型测试。模型验证通常用来检查模型是否反映了真实世界的问题,而模型测试则是为了确认模型在新数据或未见过的情况下的表现。解释模型结果是将抽象的数学输出转化为具体的、易于理解的信息。这一过程需要结合专业知识和实际情况,为决策者提供有意义的建议。

数学建模是一个迭代过程,其结果需要根据实际情况不断调整和优化。通过反复的检验、解释和改进,模型将逐步接近实际问题的真实情况。随着科技进步和数据积累,数学建模正变得越来越精确和高效,它在未来将扮演越来越重要的角色。

3. Python编程在建模中的应用

3.1 Python编程基础

3.1.1 Python语言的特点与优势

Python自1991年问世以来,凭借其简洁明了的语法和强大的功能,迅速成为IT界广受欢迎的编程语言之一。Python的主要特点与优势包括:

  • 易读性 :Python的语法简洁,易于阅读和理解,这使得新手更容易上手。
  • 可扩展性 :Python支持多种编程范式,包括面向对象、命令式、函数式和过程式编程,能够处理各种复杂的应用场景。
  • 丰富的库 :Python拥有强大的标准库以及第三方库,涵盖了网络编程、科学计算、数据可视化等多个领域。
  • 跨平台性 :Python能够在多种操作系统上运行,包括Windows、Linux和Mac OS。
  • 动态类型 :Python是动态类型语言,不需要在代码中显式声明变量类型。

从建模的角度来说,Python提供的这些优势极大地简化了模型的开发过程,并且使得模型的迭代和优化变得更加高效。

3.1.2 Python的数据结构与操作

Python的数据结构包括列表、元组、字典和集合等,每种数据结构都有其特定的用途和优势:

  • 列表(List) :有序的集合,可以包含任意类型的数据项,支持快速增删改查操作。
  • 元组(Tuple) :与列表类似,但一旦创建不能修改(不可变)。
  • 字典(Dictionary) :无序的键值对集合,通过键来快速检索值。
  • 集合(Set) :无序的唯一元素集,用于去重和成员关系测试。

这些数据结构为数学建模提供了灵活多样的数据存储与操作方式。例如,在处理多维数据时,列表的列表(列表嵌套)可以方便地模拟矩阵结构,而字典可以用来存储模型参数与对应的值,集合同Python的集合操作可以方便地进行集合关系的计算和比较。

Python还提供了多种操作数据结构的内置函数和方法,这些操作能有效地处理数据,为数学建模提供基础支撑。

3.2 Python中的数学建模工具

3.2.1 NumPy与科学计算

NumPy是Python中用于科学计算的核心库,它提供了一个强大的n维数组对象Array,以及各种用于数组操作的工具函数。NumPy的特点包括:

  • 高效处理大数据 :NumPy数组在存储和处理大数据集方面比Python原生列表更高效。
  • 广泛的数学函数库 :NumPy提供了丰富的数学函数,包括线性代数、傅里叶变换以及随机数生成等。
  • 广播功能 :NumPy数组能够进行广播操作,使得不同形状的数组之间也能进行算术运算。

NumPy是进行数学建模不可或缺的基础工具,它为模型中的数学运算提供了高效实现。

3.2.2 SciPy与工程优化

SciPy是基于NumPy构建的开源软件库,用于解决科学和工程领域的问题。SciPy的主要功能包括:

  • 线性代数 :提供矩阵运算功能,以及求解线性方程组、特征值问题等。
  • 优化算法 :内置多种优化算法,如梯度下降、遗传算法等,适用于各种工程优化问题。
  • 积分和微分方程 :提供数值积分方法和求解微分方程的工具。

SciPy在数学建模中,特别是在需要复杂计算和算法支持的领域,如物理、化学和生物等,发挥着重要作用。

3.2.3 SymPy与符号计算

SymPy是一个用于符号计算的Python库,它允许用户声明变量和进行符号运算。SymPy的特点包括:

  • 符号代数 :支持基本的代数操作,如因式分解、多项式展开、微积分等。
  • 方程求解 :能够解代数方程、微分方程等。
  • 表达式简化 :提供表达式简化功能,优化数学表达式的表达形式。

SymPy在建模中非常有用,特别是在需要对数学表达式进行精确操作时,它可以帮助研究人员避免数值计算中的误差累积。

3.3 Python与数据处理

3.3.1 Pandas在数据预处理中的应用

Pandas是一个强大的数据处理库,它提供了DataFrame和Series两种主要的数据结构。DataFrame是一个二维的标签化数据结构,而Series则是一维的标签化数据结构。Pandas的主要功能包括:

  • 数据清洗 :Pandas提供了一系列方法用于处理缺失值、重复数据、数据类型转换等。
  • 数据合并 :支持多种数据合并的方式,包括追加、合并(merge)和连接(concat)等。
  • 数据分组与聚合 :可以对数据进行分组并应用聚合函数,进行复杂的数据分析。

在数学建模中,Pandas常用于对数据进行预处理,为模型提供干净、高质量的数据集。

3.3.2 Matplotlib与数据可视化

Matplotlib是Python中最常用的绘图库之一,它能够生成高质量的静态、动态、交互式图表。Matplotlib的主要功能包括:

  • 多样化的图表类型 :支持线图、条形图、饼图、散点图、直方图等多种图表类型。
  • 高度定制化 :通过灵活的API可以自定义图表的每一个细节,包括颜色、标签、图例等。
  • 交互式绘图 :Matplotlib支持生成交互式图表,适用于Web部署。

Matplotlib在数学建模中的作用是将数据以图形的方式直观展示出来,帮助模型开发者和使用者更好地理解数据特性和模型结果。

通过上述章节的介绍,我们了解到Python编程为数学建模提供了强大的工具和库。在本章节中,我们首先探索了Python编程的基础,并详细说明了其在数据结构和操作方面的优势。随后,我们深入探讨了NumPy、SciPy和SymPy这三个数学建模的利器,它们分别在数值计算、优化算法和符号计算方面为建模提供了强有力的支持。在数据处理方面,Pandas和Matplotlib的应用让数据预处理和可视化变得更加高效和直观。接下来的章节中,我们将继续深入探讨Python在模型选择、评估以及结果解释和优化中的应用,进一步揭示Python在数学建模中的潜力和价值。

4. MATLAB编程在建模中的应用

4.1 MATLAB编程基础

4.1.1 MATLAB语言简介

MATLAB(Matrix Laboratory的缩写)是一种高性能的数值计算和可视化软件,广泛应用于工程计算、数据分析、算法开发等领域。MATLAB以其强大的矩阵处理能力和丰富的函数库而闻名,在数学建模竞赛中,它能够提供快速、直观的原型设计和算法验证,是建模竞赛选手的常用工具之一。

MATLAB语言具有如下特点:

  • 易学易用 :MATLAB使用高级矩阵/数组语言,编程风格接近数学形式,降低了编程门槛。
  • 高效的数值计算 :MATLAB提供了大量内置数学函数和算法,可以直接调用,提高计算效率。
  • 强大的图形处理能力 :MATLAB能够生成高质量的二维和三维图形,直观展示数据和结果。
  • 丰富的工具箱 :针对特定领域,MATLAB有多个工具箱可供使用,方便了专业问题的解决。

4.1.2 MATLAB的矩阵运算与函数

MATLAB的矩阵运算是其核心能力之一,几乎所有的数学运算都可以转换成矩阵运算。矩阵作为MATLAB的基本数据类型,可以进行加、减、乘、除等基本运算,也可以进行更高级的运算如矩阵分解、特征值计算等。

以下是一个简单的矩阵运算示例:

A = [1 2; 3 4];  % 定义一个2x2矩阵
B = [5 6; 7 8];  % 定义另一个2x2矩阵

C = A + B;       % 矩阵加法
D = A * B;       % 矩阵乘法
E = eig(A);      % 计算矩阵A的特征值

disp(C);         % 显示矩阵C
disp(D);         % 显示矩阵D
disp(E);         % 显示特征值E

在实际的建模应用中,矩阵运算可以用来表示和处理线性方程组、数据的线性变换等多种数学问题。

4.2 MATLAB中的数学建模工具箱

4.2.1 Simulink动态系统建模

Simulink是MATLAB的一个集成环境,用于建模、仿真和多域动态系统分析。Simulink提供一个交互式的图形界面,用户可以使用鼠标拖放的方式构建模型,非常适合复杂的动态系统的建模。

一个Simulink模型由多个模块组成,每个模块代表系统中的一个功能单元。例如,在一个控制系统的模型中,可能包括控制器模块、被控对象模块和反馈模块等。

建立Simulink模型的过程通常包括以下步骤:

  • 定义系统动态:识别系统中的动态元素,确定它们之间的关系。
  • 搭建模型结构:在Simulink界面中搭建模型,连接各个模块。
  • 配置参数:为模型中的每个模块设置适当的参数。
  • 运行仿真:设置仿真的初始条件和时间,执行仿真。
  • 分析结果:使用Scope等模块展示仿真结果,或者将结果输出至MATLAB工作空间进行进一步分析。

4.2.2 Optimization Toolbox优化求解

MATLAB的Optimization Toolbox提供了一系列的函数和应用程序,用于解决线性和非线性优化问题。优化问题在数学建模中占有非常重要的位置,包括线性规划、整数规划、非线性规划、多目标优化等。

使用Optimization Toolbox,可以执行以下操作:

  • 问题定义 :定义目标函数和约束条件。
  • 求解器选择 :根据问题特点选择合适的优化算法,如 fmincon 用于有约束的非线性优化。
  • 参数设置 :设置算法的参数,如容忍度、最大迭代次数等。
  • 求解问题 :运行求解器得到最优解。
  • 结果分析 :分析优化结果,进行敏感性分析。

4.2.3 Statistics and Machine Learning Toolbox统计与机器学习

随着数据分析和机器学习技术的发展,MATLAB提供了Statistics and Machine Learning Toolbox,以支持高级统计分析和机器学习算法。该工具箱包括用于数据预处理、统计建模、分类、回归、聚类分析等任务的函数和应用程序。

利用Statistics and Machine Learning Toolbox,可以:

  • 进行统计分析 :计算数据集的描述统计量,进行假设检验。
  • 建立统计模型 :使用线性回归、广义线性模型等建立预测模型。
  • 应用机器学习算法 :实现聚类分析、支持向量机(SVM)、决策树等机器学习方法。
  • 模型评估与选择 :使用交叉验证、AUC等方法评估模型性能。
  • 自动化模型训练 :使用自动机器学习工具(AutoML)自动选择最佳模型。

4.3 MATLAB与图形用户界面设计

4.3.1 GUI设计的基本概念

图形用户界面(Graphical User Interface,GUI)是一种用户与计算机程序交互的方式,它提供图形化的界面元素,如按钮、文本框、滑块等,用户通过操作这些元素来与程序交互。

MATLAB中,GUI设计可以通过以下几种方式实现:

  • GUIDE :GUIDE是MATLAB自带的图形用户界面设计环境,提供设计面板,可以拖放控件并进行简单的编程。
  • App Designer :App Designer是MATLAB较新的GUI设计工具,提供更加现代化的编程环境,适合创建复杂的用户界面。
  • 编程方式 :完全使用MATLAB代码来创建GUI界面,可以实现更加灵活的自定义。

4.3.2 使用GUIDE和App Designer开发工具

使用GUIDE和App Designer开发工具,可以更加快速和直观地构建出功能完备的GUI应用。

  • GUIDE的基本操作

    1. 打开GUIDE界面。
    2. 在设计面板中添加各种控件如按钮、滑块等,并设置属性。
    3. 双击控件编写相应的回调函数,实现控件与程序逻辑的连接。
    4. 运行GUI界面,测试功能是否符合预期。
  • App Designer的基本操作

    1. 启动App Designer,并创建新的应用。
    2. 在App Designer的设计视图中添加控件,并拖放到适当位置。
    3. 在代码视图中编写每个控件的回调函数和程序逻辑。
    4. 使用App Designer的预览功能测试应用。
    5. 发布应用,使其能够独立运行。

通过上述工具和方法,可以创建交互式的MATLAB GUI应用,用于展示模型结果、设置模型参数、进行用户交互等任务,极大地提高了程序的可用性和用户体验。

5. 数据预处理技巧

数据预处理是数学建模和数据分析过程中至关重要的一步,它直接影响到模型的准确性和分析结果的可靠性。本章节将深入探讨数据预处理的各个方面,包括数据清洗、数据特征提取与转换以及数据集的划分和交叉验证。

5.1 数据清洗的方法

5.1.1 缺失值处理

在现实世界的数据集中,数据常常因为各种原因出现缺失值。处理缺失值的方法很多,最常见的是删除含有缺失值的记录或者填充缺失值。如果数据集较大,缺失值不多,可以选择删除法。而在大多数情况下,我们倾向于使用填充法。填充可以是简单地使用数据集的均值、中位数或众数,也可以用模型预测的方法进行更复杂的填充。

在Python中,我们可以使用Pandas库来处理缺失值:

import pandas as pd

# 假设df是加载的数据框
# 删除含有缺失值的列
df_cleaned = df.dropna(axis=1)

# 删除含有缺失值的行
df_cleaned = df.dropna(axis=0)

# 用均值填充数值型列的缺失值
df_filled = df.fillna(df.mean())

# 使用特定的值填充缺失值
df_filled = df.fillna(0)

5.1.2 异常值检测与处理

异常值是指那些与数据集中的其他观测值显著不同或不符合数据生成过程的观测值。异常值可能是由于数据收集或录入错误导致,也可能是真实现象的反映。在建模前,需要检测并决定如何处理这些异常值。

一种常用的方法是使用箱线图(Boxplot)来识别异常值:

import matplotlib.pyplot as plt

# 假设某列数据为col_data
plt.boxplot(df['col_data'].values)
plt.show()

一旦发现异常值,可以考虑以下处理方法: - 删除异常值 - 用均值、中位数或众数替换异常值 - 通过数据转换减少异常值的影响,例如对数转换或归一化

5.2 数据特征提取与转换

5.2.1 数据标准化与归一化

数据标准化和归一化是特征处理的重要步骤,它们可以将数据按比例缩放,使之落入一个小的特定区间,通常是对模型求解有利的。标准化(Standardization)一般指减去均值后除以标准差,数据会具有单位方差。而归一化(Normalization)通常指的是将数据按比例缩放到一个小的特定区间,比如[0,1]。

在Python中可以使用如下代码实现:

from sklearn.preprocessing import StandardScaler, MinMaxScaler

# 标准化
scaler = StandardScaler()
data_standardized = scaler.fit_transform(data)

# 归一化
scaler = MinMaxScaler()
data_normalized = scaler.fit_transform(data)

5.2.2 特征选择与降维

特征选择是从原始特征中挑选出一部分特征,提高模型性能和解释能力。降维技术通常通过数学变换来减少数据的维数,例如主成分分析(PCA)。它们通常用于处理高维数据,减少计算量,同时也能减少过拟合的风险。

以下是使用PCA进行降维的示例代码:

from sklearn.decomposition import PCA

# 设定主成分的数量
pca = PCA(n_components=2)
data_reduced = pca.fit_transform(data)

5.3 数据集划分与交叉验证

5.3.1 训练集、验证集与测试集的划分

数据集的划分对于模型的训练和评估至关重要。通常,数据被分为训练集、验证集和测试集。训练集用于模型训练,验证集用于模型选择和超参数调整,测试集用于最终评估模型性能。

在Python中,可以使用scikit-learn提供的train_test_split函数进行划分:

from sklearn.model_selection import train_test_split

# 假设X是特征矩阵,y是目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

5.3.2 K折交叉验证的原理与应用

K折交叉验证是模型选择过程中一种强大的技术,用于评估模型对未见数据的泛化能力。数据集被随机分成k个大小相等的子集,其中k-1个子集用作训练数据,剩下的1个子集用作验证数据。整个过程重复k次,每次选择不同的验证集,最后计算k次评估指标的平均值作为最终的模型性能指标。

以下是K折交叉验证的示例代码:

from sklearn.model_selection import cross_val_score

# 假设model是拟合的模型,X是特征矩阵,y是目标变量
scores = cross_val_score(model, X, y, cv=5) # 5折交叉验证
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

通过以上的数据预处理技巧,可以确保数据的质量和模型的准确性,为接下来的模型选择和评估打下坚实的基础。

6. 模型选择与评估方法

在数学建模过程中,模型的选择和评估是至关重要的环节。一个合适的模型可以准确地反映问题的本质,而一个好的评估方法能够帮助我们更深入地理解模型的性能,并对其进行优化。

6.1 常见模型的比较与选择

6.1.1 线性模型与非线性模型的权衡

线性模型因其结构简单、易于理解和求解而在许多实际问题中得到应用。然而,当问题的内在机制呈现非线性特征时,使用线性模型可能无法准确捕捉数据之间的复杂关系,这时非线性模型则显得更加合适。比较线性和非线性模型时,应考虑以下几个因素:

  • 数据的特性:如果数据明显呈现非线性关系,则非线性模型更合适。
  • 模型的解释性:通常线性模型更容易解释,而非线性模型可能较为复杂。
  • 计算资源:非线性模型可能需要更多的计算资源,尤其是在大规模数据集上。

6.1.2 监督学习与无监督学习模型的选择

在选择模型时,首先需要明确问题的类型。监督学习适用于那些有明确输入输出对的情况,而无监督学习则用于数据没有标记的情况。在实际应用中,可以考虑以下点来选择模型:

  • 问题类型:分类问题通常使用决策树、支持向量机等;聚类问题则可能用到K-means、层次聚类等。
  • 数据的预处理:无监督学习不需要标记数据,可以减少预处理的工作量。

6.2 模型评估的标准

6.2.1 准确率、精确率与召回率的计算

在评估分类模型时,准确率、精确率和召回率是最常见的标准。它们分别定义为:

  • 准确率(Accuracy):正确预测的样本数占总样本数的比例。
  • 精确率(Precision):正确预测为正例的样本数占预测为正例的样本数的比例。
  • 召回率(Recall):正确预测为正例的样本数占实际正例样本数的比例。

$$ Accuracy = \frac{TP + TN}{TP + TN + FP + FN} $$ $$ Precision = \frac{TP}{TP + FP} $$ $$ Recall = \frac{TP}{TP + FN} $$

其中TP、TN、FP、FN分别代表真正例、真负例、假正例、假负例的数量。

6.2.2 ROC曲线与AUC值分析

ROC曲线(Receiver Operating Characteristic curve)是评估分类模型性能的另一种重要工具。它通过调整阈值来展示不同点的假正例率(FPR)和真正例率(TPR)的变化。AUC(Area Under the Curve)值是ROC曲线下方的面积,用于量化模型整体性能,其值范围从0到1,AUC值越接近1表明模型性能越好。

6.3 模型优化的策略

6.3.1 超参数调整与网格搜索

超参数的调整对于模型性能至关重要。网格搜索(Grid Search)是一种常用的超参数优化方法,它通过遍历预定义的参数组合来找到最优的参数组合。

from sklearn.model_selection import GridSearchCV

# 假设有一个SVM分类器和相应的参数范围
parameters = {
    'kernel': ['linear', 'rbf'],
    'C': [0.1, 1, 10, 100]
}
svc = SVC()

clf = GridSearchCV(svc, parameters, cv=3)
clf.fit(X_train, y_train)

在上述代码块中,我们定义了SVM的核函数和正则化参数C的搜索范围,并通过GridSearchCV来找到最佳的参数。

6.3.2 集成学习方法与模型融合

集成学习方法通过构建并结合多个学习器来完成学习任务。常见的集成方法包括Bagging、Boosting和Stacking。集成学习能够有效地减少过拟合,提高模型的泛化能力。

模型融合是指将不同的模型结合起来进行预测,可以是简单的平均、投票机制,也可以是更复杂的加权方式。

from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

rf = RandomForestClassifier()
svm = SVC()
ensemble_model = VotingClassifier(estimators=[('rf', rf), ('svm', svm)], voting='soft')
ensemble_model.fit(X_train, y_train)

在上面的代码示例中,我们创建了一个集成模型,它将随机森林和SVM的预测结果通过软投票机制结合起来。

在第六章中,我们讨论了在数学建模过程中如何根据问题特点选择合适的模型,并通过准确率、精确率、召回率、ROC曲线和AUC值来评估模型的性能。我们还介绍了超参数调整和网格搜索,以及集成学习和模型融合等优化策略,这些都是提高模型预测准确性的关键步骤。在下一章节中,我们将深入讨论如何解释模型结果,并探讨模型的验证、测试和实际应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本资源深入探讨了使用Python和MATLAB进行数学建模的过程,尤其侧重于美国数学建模竞赛中的模型构建和代码实现。涵盖模型选择、数据预处理、模型评估以及结果解释等方面,提供了完整的数学建模解决方案和详细的代码实现,对提升建模和编程技能有实际帮助。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值