机器学习
刘阿怪
信为欲依,欲为勤依。
展开
-
《机器学习》周志华—第一章学习总结
1.1基本术 要进行机器学习,先要有数据。书中就以一批关于西瓜的数据为例,eg:(色泽=浅白;根蒂=硬挺;敲声=清脆),.......每对括号内是一条记录,”=”意思是“取值为”。这组记录的集合称之为一个“数据集”,(有时数据集也称之为“样本”)其中每一条记录是关于一个事件或对象(这里是一个西瓜)的描述,称之为是一个“示例”或“样本”。反应事件或对象在某方面的表现或性质的事项,“色泽”“...2018-05-17 18:25:24 · 791 阅读 · 0 评论 -
机器学习之特征工程
特征工程:是对原始数据进行一系列的工程处理,将其提炼为特征,作为输入供算法和模型的使用。本质上将特征工程是一个表示和展现数据的过程,在实际操作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征来刻画求解过程中和预测模型之间的关系。 1:特征归一化: 为什么要对数据类型的特征做归一化? 对数值类型的特征做归一化科技将所有的特征都统一到一个大致的相同的数值区间内,是个指标处于同一...原创 2019-04-14 17:38:43 · 329 阅读 · 0 评论 -
机器学习之模型评估
1. 评估指标的局限性 准确率(Accuracy): 分类正确的样本占总样本个数的比列 精确率(Pression):分类正确的正样本占分类器判定为正样本个数的比列 召回率(Recall):分类正确的正样本占真正的正样本个数的比列 准确率的局限性: 当不同类别的样本比例非常不均衡的时候,占比大的类别往往会成为影响准确率的最主要的因素。 为了解决这个问题,可以使用更为有效的平均...原创 2019-04-17 18:43:10 · 426 阅读 · 0 评论