代码随想录|二叉树|leetcode235,701,450

文章讲述了在二叉搜索树中查找最近公共祖先的算法,以及如何实现插入和删除操作的递归策略。作者详细解释了每个操作的思路和基本情况。
摘要由CSDN通过智能技术生成

二叉搜索树的最近公共祖先

class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
        if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
        return root;
        
    }
}

思路:

  1. 基本情况

    • 如果当前root节点的值大于pq的值,那么pq都在root的左子树中,因此我们将递归在左子树中查找。

    • 如果当前root节点的值小于pq的值,那么pq都在root的右子树中,因此我们将递归在右子树中查找。

  2. 结束条件

    • 如果root的值不满足上述两种情况,那么root要么与p相等,要么与q相等,或者root的值在pq之间。在这三种情况下,root节点都是pq的最低公共祖先。

搜索二叉树插入操作 

 

class Solution {
    public TreeNode insertIntoBST(TreeNode root, int val) {
        if (root == null) // 如果当前节点为空,也就意味着val找到了合适的位置,此时创建节点直接返回。
            return new TreeNode(val);
            
        if (root.val < val){
            root.right = insertIntoBST(root.right, val); // 递归创建右子树
        }else if (root.val > val){
            root.left = insertIntoBST(root.left, val); // 递归创建左子树
        }
        return root;
    }
}

思路:

  1. 首先检查当前的root节点是否为空。如果为空,这意味着我们已经找到了一个合适的位置来插入val。因此,我们创建一个新的节点,将val的值赋给它,并返回这个新创建的节点。

  2. 如果当前root节点的值小于val,这意味着val应该被插入到root的右子树中。所以,我们递归调用insertIntoBST,将root.rightval作为参数。这样我们就能继续在右子树中查找val的正确位置。

  3. 如果当前root节点的值大于val,这意味着val应该被插入到root的左子树中。所以,我们递归调用insertIntoBST,将root.leftval作为参数。这样我们就能继续在左子树中查找val的正确位置。

  4. 在递归调用之后,我们需要更新当前root节点的左子节点或右子节点,以指向新插入的节点(如果有的话)。

  5. 最后,返回当前的root节点。

删除搜索二叉树中的节点 

class Solution {
  public TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return root;
    if (root.val == key) {
      if (root.left == null) {
        return root.right;
      } else if (root.right == null) {
        return root.left;
      } else {
        TreeNode cur = root.right;
        while (cur.left != null) {
          cur = cur.left;
        }
        cur.left = root.left;
        root = root.right;
        return root;
      }
    }
    if (root.val > key) root.left = deleteNode(root.left, key);
    if (root.val < key) root.right = deleteNode(root.right, key);
    return root;
  }
}

 思路:

  1. 如果root为空,直接返回null。这是基本的递归结束条件。

  2. 如果当前root的值等于要删除的key值,这意味着我们找到了要删除的节点。接下来有三种情况:

    • 当前节点没有左子树,返回右子树。这也包括了当前节点既没有左子树也没有右子树的情况。

    • 当前节点没有右子树,返回左子树。

    • 当前节点既有左子树又有右子树。这种情况下,我们需要找到一个替代的节点来替换当前要删除的节点。替代的节点可以是左子树的最大值节点或右子树的最小值节点。在这段代码中,它选择了右子树的最小值节点。因此,它遍历右子树直到找到最左侧的节点(即最小值),然后将要删除节点的左子树连接到这个最小值节点的左子树上。最后,返回root的右子树。

  3. 如果当前root的值大于key,这意味着要删除的节点在左子树中,因此递归调用deleteNode函数处理左子树。

  4. 如果当前root的值小于key,这意味着要删除的节点在右子树中,因此递归调用deleteNode函数处理右子树。

  5. 在所有情况下,最后返回的是root节点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值