本文背景
我们在写提示词的时候,AI对COT少量样本的学习能力很重要。
要编写出一套出色的内容创作提示(prompt),关键在于如何教GPT进行自我创作,这就是一门“know how”的艺术。
比如当你要AI写一个视频标题,初学者只是简单地提出“帮我想一个热门视频标题”。但是,热门的定义是什么?它的热门程度是什么?应该运用哪些创作技巧? 如果你没有明确这些要素,GPT怎么能创作出满足你期望的内容?
低质量的输入只会导致低质量的输出。
正确的方法是提供一套明确的创作方法论和技巧,比如使用特定的修辞手法、写作视角、语言风格或内容结构,让AI有一个模仿和学习的基础。
数据采集
首先我们需要收集用于模仿的内容。在我的案例中,要收集几十个目标博主的视频标题,这些将作为我们的“数据”。数据收集可以通过两种方式进行:
第一种是手工采集,即直接复制粘贴、OCR识别或手动输入。
第二种是自动采集,使用爬虫或脚本。 我使用的是“后羿采集器”的爬虫软件。
我原本计划写一个使用后羿采集器采集小红书笔记的教程,但由于小红书页面经常更新,所以就算写一个出来也会很快失效。
不过本文的主题并不是数据采集,等我找到新方法后分享相关教程。 完成采集后,将数据导出为Excel表格。
获得高点赞数的视频标题质量是较高的,所以我建议使用WPS打开表格后,通过筛选功能按“点赞数”降序排列,以便快速找到最受欢迎的标题和文案。

数据整理
数据清洗的过程,本质上是去除不需要的数据并保留有价值的信息。
数据清洗同样可以通过手工或自动两种方式进行。
手工清洗意味着自己复制粘贴和删除,如果数据量不大,这种方法是可行的。
但现在能用AI了,重复性工作自然应该交给自动化工具来完成。
我推荐的方法是使用AI的数据分析器(之前称为代码解释器),上传Excel表格后,下达数据清洗的指令,明确指出需要去除和保留的内容。
如图示

这是一个GPT4数据分析器的使用范例。如果我们的目标仅仅是获取标题,实际上可以直接在Excel中选择并复制。

方法论拆解
1、拆解分析维度
首先,我给 GPT 提问:
❝假设我们只关注小红书博主视频笔记的标题文字,忽略其他因素,我应该如何分析这些标题,以便学习其文字风格和创作技巧,进而模仿出同样吸引人的标题呢?
GPT 回复:
❝GPT的回答提供了一套分析框架:
关键词运用:留意博主频繁使用的关键词或短语,它们可能与博主的内容主题、风格或目标受众紧密相关。
标题长度:分析标题是简洁有力还是详尽描述,不同长度的标题各有其优势。
语言风格与语调:观察标题是正式还是非正式,是否运用了修辞技巧,如夸张、对比等。