FJ’s N (1 ≤ N ≤ 10,000) cows conveniently indexed 1…N are standing in a line. Each cow has a positive integer height (which is a bit of secret). You are told only the height H (1 ≤ H ≤ 1,000,000) of the tallest cow along with the index I of that cow.
FJ has made a list of R (0 ≤ R ≤ 10,000) lines of the form “cow 17 sees cow 34”. This means that cow 34 is at least as tall as cow 17, and that every cow between 17 and 34 has a height that is strictly smaller than that of cow 17.
For each cow from 1…N, determine its maximum possible height, such that all of the information given is still correct. It is guaranteed that it is possible to satisfy all the constraints.
Input
Line 1: Four space-separated integers: N, I, H and R
Lines 2… R+1: Two distinct space-separated integers A and B (1 ≤ A, B ≤ N), indicating that cow A can see cow B.
Output
Lines 1… N: Line i contains the maximum possible height of cow i.
d数组记录对从第i个牛开始的影响,c数组记录d数组的前缀和。
如果d[2]等于-1是指从第二个牛开始以后每个牛都是-1,d[5]=1时,从第5个牛开始,d[2]=-1的影响和d[5]=1的影响抵消。
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
int N, I, H, R;
int re[10005][10005], c[10005], d[10005];
int main()
{
scanf("%d%d%d%d", &N, &I, &H, &R);
for (int i=1; i<=R; i++){
int a, b;
scanf("%d%d", &a, &b);
if (a>b) swap(a, b);
if (re[a][b]==1) continue;
else{
re[a][b]=1;
d[a+1]--;
d[b]++;
}
}
for (int i=1; i<=N; i++){
c[i]=c[i-1]+d[i];
printf("%d\n", H+c[i]);
}
return 0;
}