1)移动中止指针累加和,直到sum>=target。 ===> 确认了中止位置
2)获取本轮窗口大小,因为这个时候已经达成sum大于等于target的条件,所以滑动起始指针获取该中止位置下的最小子数组长度。===> 使用while
3)先对sum做减法操作,减去起始位置
A. 减去后依旧大于等于target,子数组缩小,满足
B. 减去后sum小于target,则代表该中止位置下,起始到中止位置长度是当前唯一满足的子数组且长度最小。此时能做的只有起始位置&中止位置向右移动找新的子数组。
class Solution:
def minSubArrayLen(self, target: int, nums: List[int]) -> int:
# if sum(nums)<target:
# return 0
res = len(nums)+1
low_bound = 0
total = 0
for up_bound in range (0, len(nums)):
total = total+nums[up_bound]
while low_bound<=up_bound and total>=target:
res = min(res,up_bound-low_bound+1)
total=total-nums[low_bound]
low_bound +=1
return res if res!=len(nums)+1 else 0
滑动窗口通常:
1)固定中止位置指针,滑动起始位置指针
1)分解问题:先将复杂问题分解成每一层螺旋的代码实现
2)循环不变量:左闭右开区间,矩阵每条边只取左闭右开。
class Solution:
def generateMatrix(self, n: int) -> List[List[int]]:
res = [[0 for i in range (n)]for j in range (n)]
xstart, xend = 0, n-1
ystart, yend = 0, n-1
nums = 1
while xend-xstart>0 and yend-ystart>0:
# 横向正向
for i in range (xstart, xend):
res[ystart][i] = nums
nums +=1
# 纵向正向
for j in range (ystart, yend):
res[j][xend] = nums
nums +=1
# 横向反向
for p in range (xend, xstart, -1):
res[yend][p] = nums
nums +=1
# 纵向反向
for q in range (yend, ystart, -1):
res[q][xstart] = nums
nums +=1
xend -=1
xstart +=1
yend -=1
ystart +=1
if xend-xstart==0 and yend-ystart==0:
res[yend][xend] = nums
return res
区间和:
前缀和的思想是重复利用计算过的子数组之和,从而降低区间查询需要累加计算的次数。
在vec数组上 下标 2 到下标 5 之间的累加和,那是不是就用 p[5] - p[1] 就可以了。
p[1] = vec[0] + vec[1];
p[5] = vec[0] + vec[1] + vec[2] + vec[3] + vec[4] + vec[5];
p[5] - p[1] = vec[2] + vec[3] + vec[4] + vec[5];
开发商购买土地:
1)分解问题:因为只能横切和竖切,所以分解成二维的区间和问题。
-
上半部分的和 =
horizontalCut(前i行的和) -
下半部分的和 =
sum - horizontalCut(剩余行的和) -
两部分的差值 =
(sum - horizontalCut) - horizontalCut=sum - 2*horizontalCut

被折叠的 条评论
为什么被折叠?



