代码随想录算法训练营||Day02- 209.长度最小的子数组/59.螺旋矩阵II/区间和/开发商购买土地

209. 长度最小的子数组

1)移动中止指针累加和,直到sum>=target。 ===> 确认了中止位置
2)获取本轮窗口大小,因为这个时候已经达成sum大于等于target的条件,所以滑动起始指针获取该中止位置下的最小子数组长度。===> 使用while
3)先对sum做减法操作,减去起始位置
  A. 减去后依旧大于等于target,子数组缩小,满足
  B. 减去后sum小于target,则代表该中止位置下,起始到中止位置长度是当前唯一满足的子数组且长度最小。此时能做的只有起始位置&中止位置向右移动找新的子数组。

class Solution:
    def minSubArrayLen(self, target: int, nums: List[int]) -> int:
        # if sum(nums)<target:
        #     return 0
        res = len(nums)+1
        low_bound = 0
        total = 0
        for up_bound in range (0, len(nums)):
            total = total+nums[up_bound]
            while low_bound<=up_bound and total>=target:
                res = min(res,up_bound-low_bound+1)
                total=total-nums[low_bound]
                low_bound +=1
        return res if res!=len(nums)+1 else 0

滑动窗口通常:
1)固定中止位置指针,滑动起始位置指针

59. 螺旋矩阵 II

1)分解问题:先将复杂问题分解成每一层螺旋的代码实现

2)循环不变量:左闭右开区间,矩阵每条边只取左闭右开。

链接:代码随想录

class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:

        res = [[0 for i in range (n)]for j in range (n)]
        xstart, xend = 0, n-1
        ystart, yend = 0, n-1
        nums = 1
        
        while xend-xstart>0 and yend-ystart>0:
            # 横向正向
            for i in range (xstart, xend):
                res[ystart][i] = nums
                nums +=1
            
            # 纵向正向
            for j in range (ystart, yend):
                res[j][xend] = nums
                nums +=1
            
            # 横向反向
            for p in range (xend, xstart, -1):
                res[yend][p] = nums
                nums +=1
            
            # 纵向反向
            for q in range (yend, ystart, -1):
                res[q][xstart] = nums
                nums +=1
            
            xend -=1
            xstart +=1
            yend -=1
            ystart +=1
        
        if xend-xstart==0 and yend-ystart==0:
            res[yend][xend] = nums
        
        return res
        

区间和:

前缀和的思想是重复利用计算过的子数组之和,从而降低区间查询需要累加计算的次数。

在vec数组上 下标 2 到下标 5 之间的累加和,那是不是就用 p[5] - p[1] 就可以了。

p[1] = vec[0] + vec[1];

p[5] = vec[0] + vec[1] + vec[2] + vec[3] + vec[4] + vec[5];

p[5] - p[1] = vec[2] + vec[3] + vec[4] + vec[5];

开发商购买土地:

1)分解问题:因为只能横切和竖切,所以分解成二维的区间和问题。

  • 上半部分的和 = horizontalCut (前i行的和)

  • 下半部分的和 = sum - horizontalCut (剩余行的和)

  • 两部分的差值 = (sum - horizontalCut) - horizontalCut = sum - 2*horizontalCut

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值