java 调和级数_【学习笔记】与调和级数相关的时间复杂度

声明:博主写这个博客的理由只是为了缓解心情,大部分的东西都是我手推的,没有验证过,如果有问题敬请指出。

Noip2018day1完挂,非常难受,过来写个博客颓一下,缓解心情

1. 调和级数 调和级数$H_n=\sum^{n}{i=1} \frac{n}{i}=O(n\log n)$ 这个怎么证……抱歉蒟蒻真不会……感性理解就是$1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+...<1+\frac{1}{2}+\frac{1}{3}+...<1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}...$ 不过调和级数$\sum^{n}{i=1} \frac{n}{i}$是微积分中$\int^n_{1} \frac{1}{x} dx$的离散模拟。(这话这么说对吗……抱歉蒟蒻非常菜鸡啥都不会)

然后考虑一个推广的情形: $T(n)=\sum^{n}_{i=1} (\frac{n}{i})^k$

2. $0

3. $k>1$ 当$k>1$时, $n^k\int_1^n x^{-k} dx=O(n^k)$ 因此,$k>1$时$\frac{n}{k}$的影响几乎可以忽略。不过同理$k$接近$1$时也会有大常数。

好了心情恢复一点了,继续等待明天的GG……

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值