共回答了12个问题采纳率:83.3%
已经调试过了
信息熵计算源代码
函数源程序 CalEntropy.m
Information Shannon Entropy calculation
jma@hebut.edu.cn, 22/08/2007
array : Discrete Probabilities Set
H : Output Shannon Entropy
function H = CalEntropy(array)
Vector number
num = length(array);
Check probabilities sum to 1:
if abs(sum(array) - 1) > .00001,
error('Probablities don''t sum to 1.')
end
Remove any zero probabilities %%
zeroProbs = find(array < eps);
if ~isempty(zeroProbs),
array(zeroProbs) = [];
disp('Removed zero or negative probabilities.')
End
Compute the entropy
H = -sum(array .* log2(array)); % 单位 bit/symbol
1年前
1
本文介绍了一个用于计算信息熵的Matlab函数CalEntropy.m。该函数能够处理离散概率集并计算香农熵,同时能够移除概率为零的项以避免计算错误。文章提供了完整的源代码实现,并附带了函数使用说明。
7714

被折叠的 条评论
为什么被折叠?



