16 本地服务业务中的推荐系统实战——算法篇

你好,我是大师兄。15 讲我们讲述了同城本地服务的各个业务背景和特点,以及推荐系统工程架构落地和演化过程。这一讲我们主要讲述同城本地服务业务与推荐算法模型的关系和演化过程。

在课程开始前,我们先回顾一下同城本地服务主站业务特点以及推荐场景位所关注的指标。

主站业务是通用的业务形式,由 APP/PC/M 等端口进入本地服务落地页,以流量生意为主。(开环业务,目前产品形态正在从开环向半闭环演进)。

  • 推荐场景:列表页、详情页、落地页等;

  • 推荐内容:帖子、商家、店铺、商品、标签等;

  • 推荐关注指标:CTR、CVR、Call/UV 等。

本地服务主站流量分发问题与特点

主站场景下的核心目标是通过算法场景化和搜索推荐等分发系统,将主站上的信息资产实现对用户的精准触达。

主站的用户核心行为路径:

  • 用户直接带着需求或者不带需求(搜索词)进入主要的服务场景——主站的列表页;

  • 在列表页上,用户可以浏览帖子标题、价格等内容,并点击帖子详情页查看详细信息、评论等内容;

  • 然后发起线上电话沟通或者通过提供的微聊促进线下成交。

在整个过程中,用户产生的数据信息有列表页详情页曝光、点击、电话、微聊、评论等。

主站流量分发目前具有的问题如下:

  • 信息同质化严重:主要体现为一是帖子信息堆叠严重,比如一个帖子中一些无意义的内容占据了很大篇幅;二是可区分度差,比如一个发布保姆月嫂的帖子,其中只放了一张正常女性照片和你懂的三个字。

  • 人群结构复杂:存在未登录用户、新用户、低活用户等人群,因此,我们需要制定差异化的推荐策略,并针对性地优化推荐模型。

  • 决策周期问题:决策长短周期不一,轻重决策共存,当然也存在短期低频、需求周期短的情况,比如单价高的家装、租车等长周期服务用户会花更多时间挑选决策,相对比较谨慎;而要求短时间内快速解决的管道疏通、空调维修等需求,用户浏览几个店家后即可做决策。

  • 多行业、多场景、多种类、多目标:本地服务类目繁多,涉及 200+ 不相关行业、10+ 个推荐场景位,推荐内容包括帖子、商家、店铺等,因此,我们需要结合业务特点,实现不同的优化目标(CVR、CTR、Call/UV 等)。

下面我们针对上面提及的问题给出具体的解决方案。

主站流量分发解法

1.信息供给侧,将内容结构化、标签化

上面提到的问题比较多,下面我们先从信息结构化、标签设计及应用、标签挖掘流程这三个层面,重点介绍在针对信息供给侧,如何提升内容描述能力、增加信息区分度的具体实践方法。

1)信息结构化

针对帖子内容雷同严重、能看出大量拷贝的痕迹这个问题,首先我们想到的是在发布的时候直接解决掉。

于是,我们采用了发布结构化的方式进行解决。

首先,我们在内容发布端针对不同服务定义了多种可选内容模板,商家选择对应的模板,直接填写个性化参数即可完成帖子发布。

其次,针对不同的服务类型,我们在产品侧也进行了相关优化,主要分为 3 部分:

  • 服务标准化:以搬家为例,根据用户个性化需求,我们实现了更好地辅助用户进行决策的目标。商家通过不同需求项的选择,即可快速完成服务预订,同时也能得到相应的价格预估,大大缩短了商家决策链。比如车辆信息,商家可以选择具体车辆型号、尺寸、可载量等;比如详细服务,可以选择是否有电梯、小件搬运、支持长途、小件搬运等;比如收费单项,可以选择不同里程对应的价格、超里程计算、无电梯楼层加价、随车人员数量等。

  • 服务智能定价:系统通过算法根据已选项进行计算,从而输出一个合理的价格区间。在这个计算过程中,算法剔除了市场中出现的过高/过低的报价,用以规范同城的运营机制和列表页展现结果。

  • 相册自动分类:通过相册自动分类功能,使得用户上传的图片可以自动分类到不同相册,方便进行回溯。

2)标签设计及应用

标签化是结构化的一个重要方法,我们先来看一个未优化前的列表页展示页面,如下图所示:

从图上来看,各搜索结果的展现信息都是雷同的,信息罗列程度单一,看不出来各自的区分度,也就很难契合用户的关注,用户体验较差。因此,针重点对这个问题我们重点做了信息标签设计,并体现在产品展示层中。

通过需求搜索词进入列表页后,用户还可以通过搜索词匹配对应服务的标签(比如体现家电维修的快速上门的标签、家政服务的老人看护/做饭服务等标签)。

通过标签设计及应用,不仅展现了标准化的服务特点,还能够更好地细化用户需求,从而契合用户关注。

3)标签挖掘流程

下面我们先通过一张图来了解标签挖掘的整个流程,如下图所示:

从图中可以看出,整个标签挖掘的流程是系统先通过帖子等数据源挖掘备选词,再将备选词库融合形成标签词,紧接着这批标签词通过同义词库和归一规则形成基础标签。然后使用算法进行行业消岐,并形成行业标签,最终行业标签在不同场景进行应用。

2.知识化标签体系:挖掘标签间关系

上面我们提到的标签化是相对扁平的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周壮

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值