排列组合中的去重问题

排列组合是笔试面试中常见的题目类型,普通排列组合难度较简单,但如果包含去重问题时候,还是有些规律可循的

Leetcode47 全排列 II

**题目描述**
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明:

所有数字(包括目标数)都是正整数。
解集不能包含重复的组合。 

**示例**
输入: [1,1,2]
输出:
[
  [1,1,2],
  [1,2,1],
  [2,1,1]
]

首先说为何会产生重复问题,以示例来说,当索引从0开始会出现1,1,2的情况,而当首先选择第2个1时候,还有可能选择第一个1,这样还是1,1,2,导致了,重复问题的出现,当然你也可以在最终结果集中用list的contains方法去重,不过方法复杂度较高,直接在递归过程中去重,复杂度较低。
算法实现思路

首先进行排序,如果两个数相等,只有在前一个数已经加入到结果中时候,才能加第二个数,
所以还是以示例来说,就不存在先加入第二个1,再加入第一个1的情况了,解决了去重问题

实现代码

class Solution {
    List<List<Integer>> res = new ArrayList<>();
    boolean[] visited;
    public List<List<Integer>> permuteUnique(int[] nums) {
        visited = new boolean[nums.length];
        Arrays.sort(nums);
        dfs(nums,new ArrayList<>());
        return res;
    }
    private void dfs(int[] nums,ArrayList<Integer> tmp){
        if(tmp.size() == nums.length){   
             //if(!res.contains(tmp)) 可以在这去重,但复杂度较高,用时300ms
             res.add(new ArrayList<>(tmp));
            return;
        }
        for(int i = 0;i < nums.length;i++){
            if(i > 0 && nums[i] == nums[i-1] && !visited[i-1]) continue; //按照上述算法去重,用时2ms
            if(!visited[i]){
                visited[i] = true;
                tmp.add(nums[i]);
                dfs(nums,tmp);
                visited[i] = false;
                tmp.remove(tmp.size() - 1);
            }
        }
    }
}

Leetcode 40 组合总和

**题目描述**
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明:

所有数字(包括目标数)都是正整数。
解集不能包含重复的组合。

**示例**
输入: candidates = [2,5,2,1,2], target = 5,
所求解集为:
[
  [1,2,2],
  [5]
]

为什么会产生重复,首先先排序,数组变为1,2,2,2,5,target = 5,那么在选1,2,2时候很明显有多种选择方法,那么如何去重呢。
算法思路

当出现重复数字时候,只有在首次进入for循环,即i == index时候才可以加入,如果是回溯之后并且重复则不加入。

代码如下

class Solution {
    int[] candidates;
    int n,target;
    List<List<Integer>> res = new ArrayList<>();
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        this.candidates = candidates;this.n = candidates.length;this.target = target;
        dfs(0,0,new ArrayList<>());
        return res;
    }
    public void dfs(int index,int sum,List<Integer> tmp){
        if(index > n) return;
        if(sum > target) return;
        if(sum == target){
        	//if(!res.contains(tmp) 同样的可以在这选择去重,但复杂度高不可取
            res.add(new ArrayList<>(tmp));
            return;
        }
        for(int i = index;i < n;i++){
            if(i != index && candidates[i] == candidates[i-1]) continue;  //在这选择去重,i != index都进行了回溯
            tmp.add(candidates[i]);
            sum += candidates[i];
            dfs(i+1,sum,tmp);
            sum -= candidates[i];
            tmp.remove(tmp.size()-1);
        }
    }
}

以上,就是对排列组合中去重问题的总结。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值