- 博客(1348)
- 资源 (25297)
- 收藏
- 关注
原创 HY-MT1.5法律文书翻译实战:格式化输出与术语一致性保障指南
18亿参数轻量级翻译模型:70亿参数高性能翻译模型两者均支持33 种主流语言之间的互译,并特别融合了5 种民族语言及方言变体(如藏语、维吾尔语等),适用于多语种司法辖区下的法律文件处理。模型参数量推理速度部署场景典型用途1.8B快(<50ms/token)边缘设备、移动端实时口译、现场笔录7B中等(~120ms/token)服务器集群、云平台法律文书、合同审查其中,HY-MT1.5-7B 是基于 WMT25 夺冠模型升级而来。
2026-01-10 17:50:36
178
原创 开发者入门必看:HY-MT1.5-1.8B/7B双镜像免配置部署实战测评
HY-MT1.5 是腾讯推出的第二代混元翻译大模型,专为跨语言通信与本地化服务设计。:参数量约18亿,轻量化设计,适用于边缘设备和低延迟场景。:参数量达70亿,在WMT25夺冠模型基础上优化升级,主打高精度翻译与复杂语境理解。两者均支持33种主流语言之间的互译,并特别融合了5种民族语言及方言变体(如粤语、藏语等),显著提升了对中文多语种生态的支持能力。A:目前仅开放推理镜像,训练代码暂未开源,但支持LoRA微调接口(需申请权限)。
2026-01-10 17:00:13
110
原创 RaNER模型在金融报告分析中的实体抽取应用
本文详细介绍了RaNER 模型在金融报告分析中的实体抽取落地实践,涵盖技术选型、系统集成、前后端实现及实际应用场景。RaNER 是当前中文 NER 任务的优质选择:尤其在正式文本(如报告、公告)中表现出高准确率与稳定性。WebUI 显著提升可用性:可视化高亮界面降低了技术门槛,使非技术人员也能快速获取结构化信息。双模交互增强扩展性:REST API 接口可轻松接入自动化流水线,实现批量文档处理。
2026-01-10 15:03:26
602
原创 AI智能实体侦测服务自动重试机制:稳定性增强部署教程
bin/shset -e# 检查服务是否响应then# 进一步验证模型是否就绪RESPONSE=$(curl -s http://localhost:8080/predict -d '{"text": "测试"}')elseexit 1fi稳定性提升:服务可用性从平均 92% 提升至 99.3%用户体验改善:前端自动重试减少用户手动刷新频率达 76%运维负担降低:无需人工介入处理临时性故障。
2026-01-10 14:08:05
311
原创 AI智能实体侦测服务部署在边缘设备?轻量化改造可行性分析
本文围绕“AI智能实体侦测服务能否部署于边缘设备”这一核心问题,以基于RaNER模型的NER WebUI服务为例,系统分析了轻量化改造的可行性路径,并完成实际验证。技术上完全可行:通过模型量化(INT8)+ 推理引擎优化(ONNX/OpenVINO)+ 系统裁剪(去重前端)的组合策略,可将原本需1.3GB内存的服务压缩至700MB以内,适配主流边缘设备。性能代价可控:在树莓派4B上,单次推理延迟约为210ms,虽不及GPU加速环境,但对于非实时交互类应用(如文档处理、日志分析)已具备实用价值。
2026-01-10 13:25:23
699
原创 Qwen3-VL-WEBUI边缘部署方案:从云端到终端的算力适配指南
本文系统介绍了在边缘设备上的部署方案,涵盖技术原理、环境搭建、性能优化与典型应用。通过合理配置,我们成功在单张 RTX 4090D 上实现了 Qwen3-VL-4B-Instruct 的高效推理,验证了其在本地化、低延迟、高安全性场景下的巨大潜力。核心要点回顾:1.Qwen3-VL-4B-Instruct 是专为边缘优化的高性能多模态模型,兼顾能力与资源消耗;2.WEBUI 提供零代码交互体验,适合非技术人员快速上手;3.Docker化部署简化了环境依赖,一键启动即可访问;4.
2026-01-10 11:15:56
103
原创 Qwen3-VL网络优化:低延迟传输方案
本文围绕Qwen3-VL-WEBUI 的低延迟传输需求感知保持的图像压缩算法,在保证语义完整性的同时大幅减小传输体积;WebSocket 流式上传机制,实现“边传边处理”,有效隐藏网络延迟;KV Cache 缓存复用技术,显著降低多轮交互的重复计算开销;边缘部署 + CDN 加速架构,提升全球用户的访问速度和稳定性。这些优化不仅适用于 Qwen3-VL,也可推广至其他多模态大模型的 Web 交互系统。未来我们将进一步探索模型切片传输和客户端轻量化预编码,持续逼近“零等待”推理体验。💡。
2026-01-10 07:45:13
649
原创 Qwen2.5-7B网络优化:分布式推理加速
本文围绕Qwen2.5-7B 在网页服务中的分布式推理优化模型层面:Qwen2.5-7B 凭借 GQA、RoPE、SwiGLU 等先进架构,在保持较小体积的同时支持 128K 上下文与多语言能力。推理层面:通过张量并行(TP=4)+ PagedAttention + Continuous Batching实现高吞吐、低延迟推理。部署层面:结合 GPTQ 4-bit 量化,在 4×4090D 上实现稳定服务,显存仅占 3.8GB,支持 20+ 并发。应用层面。
2026-01-10 06:26:49
397
原创 Qwen2.5-7B部署排错:常见问题解决方案大全
硬件资源不足:通过模型并行与量化缓解显存压力镜像拉取失败:检查网络、权限与加速配置Web 服务不可达:确保端口暴露与反向代理正确接口返回异常:加强输入校验与输出容错上下文管理失效:规范对话模板与缓存机制多语言支持缺陷:统一编码与前端适配优先使用优化推理框架:推荐 vLLM 或 TGI 替代原生加载严格控制输入长度:防止因超长上下文引发 OOM建立完整监控链路:实现快速定位与自动告警定期更新模型镜像:关注阿里官方发布的 patch 版本。
2026-01-10 03:41:25
180
原创 Qwen2.5-7B决策支持:商业分析辅助系统搭建
Qwen2.5-7B 凭借其强大的结构化数据理解能力、长上下文支持、高质量 JSON 输出特性,成为构建商业分析辅助系统的理想选择。通过将其集成到网页服务中,企业可以快速打造一个支持自然语言交互的智能 BI 助手,显著降低数据分析门槛。
2026-01-10 03:17:37
193
原创 Sambert-HifiGan模型训练:如何准备高质量语音数据
✅ 成功训练的前提是:干净、一致、结构化的数据[ ] 所有音频为 24kHz、单声道、WAV 格式[ ] 文本已完成清洗与正则化[ ] 每条语音均完成强制对齐[ ] 数据已按发音人划分训练/验证/测试集[ ] 情感标签完整且格式统一[ ] 异常样本(噪声、静音、错配)已被剔除[ ] 元数据文件(metadata.csv)字段正确分隔[ ] 在小样本上完成端到端流程验证。
2026-01-09 17:17:36
565
原创 Sambert-HifiGan投入产出分析:如何在2个月内回收GPU投资
emotion = data.get('emotion', 'neutral') # 默认中性情感try:💡说明:每次合成生成唯一命名的.wav文件,存储于static/目录供前端访问。Sambert-HifiGan 不仅是一个优秀的学术成果,更是极具商业潜力的技术资产。通过合理的工程封装与服务设计,完全可以将其转化为可持续盈利的AI语音服务平台。🔚核心结论1.技术成熟:模型质量高,支持多情感,满足多样化需求;2.部署简单:Flask集成+依赖修复,实现“一键启动”;3.成本可控。
2026-01-09 16:45:09
249
原创 Sambert-HifiGan在在线客服中的多轮对话语音合成
import os# 初始化语音合成 pipeline# 添加情感标记try:# 执行语音合成本文围绕Sambert-HifiGan 模型,完成了从技术原理剖析到工程落地实践中文多情感语音合成的技术实现路径Flask 服务中的依赖冲突与稳定性问题WebUI 与 API 双模服务能力构建多轮对话语境下的情感适配机制✅最终成果:一个开箱即用、稳定高效、支持情感控制的中文语音合成服务,完美适用于在线客服、虚拟助手、教育播报等场景。
2026-01-09 15:42:06
263
原创 Sambert-HifiGan中文多情感语音合成:从零开始完整教程
路径 | 方法 | 功能 || GET | 返回 WebUI 页面 || POST | 接收 JSON 文本,返回音频 URL |/audio| GET | 返回最新生成的.wav文件 |本教程完整实现了基于稳定环境搭建(解决冲突)Flask WebUI 开发(含前端交互与音频播放)标准 API 接口设计实际部署与性能优化建议✅核心价值总结你获得的不仅是一个 Demo,而是一套可复用、可扩展、工业级可用的轻量 TTS 服务模板。
2026-01-09 15:32:00
425
原创 RESTful接口设计:让AI视频生成服务化
遵循资源导向明确边界职责Web服务只负责接收请求和返回状态,不参与实际推理。合理设置超时客户端轮询间隔 ≥ 5秒任务最长存活时间 ≤ 300秒(防止堆积)错误码规范化| HTTP状态码 | 含义 | 建议动作 || 任务已接收 | 开始轮询 || 参数错误 | 检查JSON格式 || Token无效 | 重新获取Token || 请求过频 | 指数退避重试 || 服务繁忙 | 等待后重试 |提供SDK简化集成# Python SDK 示例**kwargs# 使用方式。
2026-01-09 15:15:23
522
原创 ATmega328P看门狗定时器在Uno R3中的启用方法
介绍如何在Arduino Uno R3开发板上激活ATmega328P的看门狗定时器,提升系统稳定性与抗干扰能力,适用于长时间运行的嵌入式项目。
2026-01-09 14:26:44
218
原创 完整指南:RS485和RS232接口引脚定义及接法差异
深入解析RS485和RS232在引脚定义及接线方式上的不同,从通信距离到抗干扰能力全面对比,帮助理解rs485和rs232区别总结的关键要点。
2026-01-09 12:29:48
570
原创 ioctl与 unlocked_ioctl 的区别与演进:深度剖析
深入探讨ioctl与unlocked_ioctl的演变过程,解析其在内核发展中的关键变化,重点剖析ioctl机制的设计改进与实际应用差异,揭示现代驱动开发中的最佳实践。
2026-01-09 11:19:54
414
原创 VIT与CRNN对比:轻量级OCR任务谁更胜一筹?实测结果来了
特征提取:使用CNN主干网络(如ResNet、VGG)从输入图像中提取二维空间特征图;序列建模:将特征图按列切片送入双向LSTM,形成对字符顺序的时序建模;输出预测:结合CTC(Connectionist Temporal Classification)损失函数,实现无需对齐的字符序列学习。💡 优势本质CRNN本质上是一个“空间→序列”的转换器,特别适合处理不定长文本行,且在中文这种多类别、易混淆字符集上具备天然鲁棒性。请求参数image: 文件字段,上传图像返回示例"data": [
2026-01-09 07:27:47
444
原创 CSANMT模型监控:漂移检测与预警
模型漂移是指模型在生产环境中运行一段时间后,由于输入数据或目标变量的统计特性发生变化,导致其预测性能显著下降的现象。对于翻译系统而言,即使模型参数未更新,也可能因用户输入风格变化(如网络用语增多、专业术语演进)而出现“越翻越不准”的问题。📌 核心洞察漂移不等于错误,而是性能缓慢劣化的过程。等到用户投诉才发现问题,往往为时已晚。CSANMT作为高性能的轻量级翻译模型,其价值不仅体现在初始精度上,更在于能否长期稳定服务于真实用户。通过构建“感知—分析—预警—响应📌 提前发现隐患,而非事后救火。
2026-01-09 07:16:47
421
原创 5个高可用OCR开源镜像推荐:支持中英文识别,WebUI一键调用
OCR技术已从“能不能识别”进入“好不好用”的新阶段。CRNN类模型凭借其轻量与高效,仍是边缘设备和CPU环境下的首选;PaddleOCR展现了国产开源力量的强大整合能力,成为工业界事实标准;DocTR等新兴架构正在推动OCR向“文档理解”跃迁,开启智能化新篇章。💡 核心结论对于大多数中英文识别需求,基于CRNN的轻量级Web服务镜像是一个理想的平衡点——它兼顾了精度、速度与易用性,真正实现了“一键部署、即刻可用”。
2026-01-09 07:01:05
382
原创 CSANMT模型微服务化部署:容器化实践指南
本镜像基于 ModelScope 的CSANMT (神经网络翻译)模型构建,专为中文到英文翻译任务优化。相比传统NMT模型,CSANMT引入了条件语义增强机制,在长句连贯性、专业术语准确性和语言风格自然度方面表现优异。系统已集成Flask Web 服务框架,提供直观的双栏式WebUI界面,并开放RESTful API供程序调用。所有依赖库版本经过严格锁定,确保跨平台部署稳定性。整个服务以轻量级Docker容器形式交付,适用于本地开发、测试验证及生产环境部署。💡 核心亮点高精度翻译。
2026-01-09 06:28:11
607
原创 零售小票识别系统:3步部署OCR服务上线
本镜像基于 ModelScope 开源平台的经典模型进行封装与工程化升级。相比传统的CNN+Softmax分类模型,CRNN 结合了卷积神经网络(CNN)的特征提取能力与循环神经网络(RNN)的序列建模优势,特别适合处理不定长文本行的识别任务。该服务已集成 Flask 构建的 WebUI 界面,并开放标准 RESTful API 接口,适用于发票、小票、文档、路牌等多种真实场景下的文字识别需求。💡 核心亮点模型升级:由 ConvNextTiny 切换至CRNN。
2026-01-09 06:23:14
530
原创 模型压缩技术揭秘:CSANMT如何做到轻量又高性能
本项目基于ModelScope平台提供的模型进行深度优化与封装,专为中文→英文翻译任务设计。原始CSANMT模型已在多个公开数据集上展现出优于传统Transformer的翻译流畅度与语义保真度。然而,直接部署原生模型面临三大挑战:- 模型体积大,加载慢- 推理耗时长,响应延迟高- 对硬件依赖强,难以在CPU上运行为此,我们通过一系列模型压缩与工程优化手段,成功将其转化为一个可在普通x86 CPU上高效运行的轻量级服务,同时保持95%以上的原始翻译质量。💡 核心亮点回顾高精度翻译。
2026-01-09 05:18:31
679
原创 如何让译文更符合英语习惯?神经网络模型来帮忙
神经网络翻译模型的出现,标志着机器翻译从“能翻”迈向“翻得好”的新时代。CSANMT 凭借其上下文感知能力和对中英语言差异的深刻建模,显著提升了译文的自然度与地道性。本文介绍的这套 AI 翻译服务,不仅提供了开箱即用的 WebUI 和 API 接口,更重要的是展示了如何将前沿 NLP 模型落地为稳定可靠的工程系统。通过合理的架构设计、严格的环境控制和智能化的结果处理,即使是资源有限的 CPU 设备,也能胜任高质量翻译任务。🎯 核心价值总结技术层面:实现了从“机械转换”到“语义理解”的跃迁工程层面。
2026-01-09 05:13:17
619
原创 M2FP模型在智能门禁中的人体特征识别
M2FP模型凭借其高精度人体部位分割能力CPU友好型设计以及完整的前后端闭环,正在成为智能门禁系统中不可或缺的一环。它不仅拓展了传统生物识别的技术边界,也为复杂环境下的人员感知提供了可靠的数据支撑。
2026-01-09 04:01:49
884
原创 M2FP在公共安全中的应用:可疑行为识别
高精度语义理解:超越bbox框和关键点,获得真正的“人体语义地图”无需GPU也能跑:极大降低部署门槛,适合老旧安防系统升级WebUI友好易用:非技术人员也可快速验证效果生态完善:依托ModelScope平台,模型可持续迭代M2FP凭借其卓越的多人人体解析能力,正在成为公共安全领域智能视觉分析的新基建。本文展示了如何将这一前沿AI能力转化为可落地的服务系统,并成功应用于地铁异常行为监测场景。未来发展方向包括:与ReID技术融合:实现跨摄像头人体部位级追踪引入时序建模。
2026-01-09 03:20:23
384
原创 M2FP模型在虚拟社交中的人体形象生成技术
M2FP 多人人体解析服务以其高精度、强稳定性、低部署门槛三大特性,为虚拟社交场景下的数字形象生成提供了坚实的技术底座。工程可用性强:解决了 PyTorch 与 MMCV 的经典兼容难题,真正实现“零报错启动”;功能完整闭环:不仅提供模型推理,更集成了可视化拼图与 Web 交互界面;适用广泛:无论是个人开发者尝试 AI 形象编辑,还是企业构建私有化形象生成平台,均可快速集成。
2026-01-08 17:57:51
517
原创 M2FP模型内存管理:避免OOM的实用技巧
M2FP 模型虽强大,但在资源受限环境下部署需精细化内存管理。本文提出的五项核心技巧——禁用梯度、分块推理、特征释放、流式后处理、内存回收调优——构成了一个完整的 OOM 防御体系。📌 核心价值总结原理清晰:直击 PyTorch 推理内存瓶颈本质工程可用:每项技巧均经真实项目验证成本低廉:无需硬件升级即可提升稳定性结合合理的服务治理策略(限流、降级、监控),即使是纯 CPU 环境也能稳定支撑多人人体解析任务,真正实现“零报错、低延迟、高可用”的生产级部署目标。🚀 下一步建议。
2026-01-08 17:52:59
454
原创 如何用M2FP提升视频监控的识别准确率?
M2FP 是基于Mask2Former 架构优化的人体解析专用模型,专注于解决真实场景中“多人+重叠+遮挡”的复杂挑战。与传统目标检测仅输出人物外接矩形框不同,M2FP 能够对图像中每个个体进行细粒度语义分割面部、头发、左/右眼、左/右耳上衣、外套、裤子、裙子、连衣裙左/右手臂、左/右腿、左/右脚背包、帽子、手提包、鞋子这种像素级别的解析能力,使得系统不仅能“看到人”,还能“理解人的穿着、姿态和局部特征”,为后续的身份比对、行为分析、异常动作识别提供高质量结构化输入。💡 技术类比。
2026-01-08 16:50:24
601
原创 USB接口入门全解析:数据传输机制认知
深入解析usb接口的工作原理与数据传输机制,帮助理解设备间通信方式,掌握usb接口在现代电子设备中的关键作用。
2026-01-08 14:24:08
401
原创 Markdown文档生成AI图:Z-Image-Turbo与Typora集成方案
通过将与Typora深度集成,我们实现了:✅零切换成本:全程在 Markdown 编辑器中完成图文创作✅高匹配度图像:基于上下文提示词精准生成视觉内容✅本地化安全可控:所有数据保留在本地,无泄露风险✅可扩展性强:支持参数化、缓存、异步等高级功能这不仅是一次工具整合,更是内容创作范式的升级——从“先写后配图”变为“边写边出图”,极大提升了信息表达的密度与效率。
2026-01-08 11:33:32
742
原创 使用MGeo做电商收货地址归一化的完整流程
缩写与全称混用:如“北京” vs “北京市”顺序颠倒:如“朝阳区建国路” vs “建国路朝阳区”别名与俗称:如“中关村” vs “海淀中关村大街”标点与空格差异:如“漕溪路255号” vs “漕溪路 255 号”这些问题使得基于字符串精确匹配或模糊检索的方法效果有限。而 MGeo 的出现,正是为了解决这类语义层面的地址一致性判断问题。本文系统介绍了如何利用阿里开源的 MGeo 模型实现电商收货地址的高效归一化处理。
2026-01-08 11:28:20
638
原创 超详细版UDS协议入门教程:适合嵌入式新手
深入浅出讲解uds协议的核心概念与应用,特别适合嵌入式初学者。通过实例解析uds协议在汽车电子中的实际运用,帮助快速掌握诊断通信基础。
2026-01-08 11:27:49
474
原创 Z-Image-Turbo与Codex协同:AI全栈开发新范式
不是人在写代码,而是人在告诉AI怎么写代码。本文介绍的“Z-Image-Turbo + Codex”协同范式,本质上是一种认知负荷转移:将开发者从繁琐的语法细节中解放出来,专注于更高层次的逻辑设计与价值判断。对于企业和个人而言,拥抱这一变化的关键在于:- 学会用精确的语言描述需求- 建立插件化、可组合的系统思维- 构建人机协作而非“人替AI打工”的新型工作流当你下次需要开发一个AI图像应用时,不妨先问问自己:“这个问题,能不能用一句话让AI帮我写出来?
2026-01-08 11:16:07
761
原创 是否需要标注数据?MGeo预训练模型开箱即用无需标注
MGeo 的最大突破在于打破了“必须标注才能用”的传统范式。它通过大规模无监督预训练,在中文地址这一垂直领域实现了“开箱即用”的高性能匹配能力。一句话总结:如果你正在处理中文地址相似度问题,且希望避免高昂的标注成本,MGeo 是当前最值得尝试的解决方案之一。
2026-01-08 07:22:34
821
原创 MGeo部署常见问题及解决方案汇总
核心结论:MGeo 的部署难点不在模型本身,而在环境一致性与细节把控。环境问题:通过conda init和显式安装依赖确保环境完整;依赖缺失:使用官方源安装带 CUDA 的 PyTorch,避免 CPU-only 版本;GPU 不可用:检查配置与容器启动参数;中文路径兼容性:优先使用英文命名,避免潜在编码问题;Jupyter 访问失败:正确映射端口并获取访问 token。此外,建议:- 将成功环境打包为 Docker 镜像,提升可移植性;
2026-01-08 06:59:52
633
原创 零售门店数据整合:MGeo实现连锁品牌地址标准化
MGeo 的出现标志着中文地址处理进入了语义智能时代。对于连锁零售企业而言,它的价值不仅在于“去重”,更在于构建一套可信的门店主数据体系。1. 精准性:基于深度学习的语义理解,超越字符层面的机械匹配2. 高效性:单卡即可支撑千级门店地址对的分钟级处理3. 可控性:本地化部署,保障数据隐私与系统稳定性未来,随着更多行业开始重视“位置即资产”的理念,MGeo 还可拓展至物流配送路径优化、商圈热力分析、竞品门店监控等高级应用场景。
2026-01-08 06:07:40
892
原创 数据管道中断排查:MGeo上下游依赖服务健康检查清单
MGeo 作为中文地址语义匹配的先进工具,已在多个行业落地应用。但其在生产环境中的稳定性不仅取决于模型本身,更依赖于整个上下游系统的健康状态。本文围绕“数据管道中断”这一高频问题,提出了一套完整的健康检查清单,涵盖模型、硬件、输入、依赖、权限五大维度,帮助团队快速定位故障根源。核心结论一个健壮的 MGeo 服务不应只是“能跑起来”,更要做到“持续稳定运行”。自动化巡检 + 日志监控 + 快速恢复机制,才是保障数据管道畅通的关键。
2026-01-08 04:58:20
614
原创 万物识别-中文通用领域模型使用指南(含完整操作流程)
万物识别”并非仅限于分类1000类物体的经典ImageNet任务,而是指模型具备开放域、细粒度、语义丰富的图像理解能力。识别非常见物品(如“复古留声机”、“登山杖”)理解场景上下文(如“办公室会议中”、“户外野餐”)输出带动作和情感色彩的描述(如“孩子开心地吹泡泡”)这类能力依赖于视觉-语言联合建模架构(Vision-Language Model),通过对比学习让图像编码器与文本编码器对齐,从而实现跨模态语义匹配。✅ 如何激活并使用py311wwts环境✅ 复制与修改推理脚本的标准流程。
2026-01-08 03:25:30
561
对象模型示意图-05_simatic_wincc_生产线自动化系统信息化平台_v2
2021-06-02
许可证管理器-tomcat_web安全基线配置要求
2021-06-02
时钟切换-5g和mec在工业互联网中的应用探讨
2021-06-02
环境贴图-dassidirect server
2021-06-02
几何体信息-dassidirect server
2021-06-02
访问控制模型的比较-java 实现发短信功能---腾讯云短信
2021-06-02
试运行准备-problem-solving-with-algorithms-and-data-structure-using-python 中文版
2021-06-02
串联控制-web vulnerability scanner v8
2021-06-02
基于报警的回退功能-web vulnerability scanner v8
2021-06-02
紧急停止-web vulnerability scanner v8
2021-06-02
>和齿轮选择信-web vulnerability scanner v8
2021-06-02
支持完全的拓扑提取-煤矿井下搜救探测机器人结构设计
2021-06-02
派生编辑器的启动和界面-煤矿井下搜救探测机器人结构设计
2021-06-02
同期比计算-美国2019:国家人工智能战略(中英双语)-2019.6-101页(8)
2021-06-02
感兴趣区文件管理-tc itk二次开发
2021-06-02
声明编辑器-tomcat_web安全基线配置要求
2021-06-02
UPnP服务器-数据库基础知识
2021-06-02
深度过滤-数据库基础知识
2021-06-02
设置报表填报属性-美国2019:国家人工智能战略(中英双语)-2019.6-101页(8)
2021-06-02
DB2 9安全管理详解
2025-05-11
可视化入门:随机森林与决策树
2025-04-12
急诊科阿片类药物筛查与监测数据分析对比
2025-03-03
iOS 8 Swift编程食谱解决方案
2025-03-19
快速制图模板-tc itk二次开发
2021-06-02
链接与动态覆盖-tc itk二次开发
2021-06-02
CN波谱锐化-tc itk二次开发
2021-06-02
彩色变换-tc itk二次开发
2021-06-02
穗帽变换-tc itk二次开发
2021-06-02
数据元素和数据集-beyond feelings中文版
2021-06-02
编辑系统彩色表-tc itk二次开发
2021-06-02
缩放窗口-tc itk二次开发
2021-06-02
的“矢量属-tc itk二次开发
2021-06-02
漏电流的测定-普中科技 hc6800 开发板原理图
2021-06-02
本监控系统组网原则-kubernetes operators
2021-06-02
为经过地理坐标定位的图像选择像元-tc itk二次开发
2021-06-02
输入数学表达式-tc itk二次开发
2021-06-02
ENVI文件选择-tc itk二次开发
2021-06-02
PCB布局注意事项-市政道路智慧(路灯)灯杆系统解决方案
2021-06-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅