自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1348)
  • 资源 (25297)
  • 收藏
  • 关注

原创 HY-MT1.5法律文书翻译实战:格式化输出与术语一致性保障指南

18亿参数轻量级翻译模型:70亿参数高性能翻译模型两者均支持33 种主流语言之间的互译,并特别融合了5 种民族语言及方言变体(如藏语、维吾尔语等),适用于多语种司法辖区下的法律文件处理。模型参数量推理速度部署场景典型用途1.8B快(<50ms/token)边缘设备、移动端实时口译、现场笔录7B中等(~120ms/token)服务器集群、云平台法律文书、合同审查其中,HY-MT1.5-7B 是基于 WMT25 夺冠模型升级而来。

2026-01-10 17:50:36 178

原创 开发者入门必看:HY-MT1.5-1.8B/7B双镜像免配置部署实战测评

HY-MT1.5 是腾讯推出的第二代混元翻译大模型,专为跨语言通信与本地化服务设计。:参数量约18亿,轻量化设计,适用于边缘设备和低延迟场景。:参数量达70亿,在WMT25夺冠模型基础上优化升级,主打高精度翻译与复杂语境理解。两者均支持33种主流语言之间的互译,并特别融合了5种民族语言及方言变体(如粤语、藏语等),显著提升了对中文多语种生态的支持能力。A:目前仅开放推理镜像,训练代码暂未开源,但支持LoRA微调接口(需申请权限)。

2026-01-10 17:00:13 110

原创 RaNER模型在金融报告分析中的实体抽取应用

本文详细介绍了RaNER 模型在金融报告分析中的实体抽取落地实践,涵盖技术选型、系统集成、前后端实现及实际应用场景。RaNER 是当前中文 NER 任务的优质选择:尤其在正式文本(如报告、公告)中表现出高准确率与稳定性。WebUI 显著提升可用性:可视化高亮界面降低了技术门槛,使非技术人员也能快速获取结构化信息。双模交互增强扩展性:REST API 接口可轻松接入自动化流水线,实现批量文档处理。

2026-01-10 15:03:26 602

原创 AI智能实体侦测服务自动重试机制:稳定性增强部署教程

bin/shset -e# 检查服务是否响应then# 进一步验证模型是否就绪RESPONSE=$(curl -s http://localhost:8080/predict -d '{"text": "测试"}')elseexit 1fi稳定性提升:服务可用性从平均 92% 提升至 99.3%用户体验改善:前端自动重试减少用户手动刷新频率达 76%运维负担降低:无需人工介入处理临时性故障。

2026-01-10 14:08:05 311

原创 AI智能实体侦测服务部署在边缘设备?轻量化改造可行性分析

本文围绕“AI智能实体侦测服务能否部署于边缘设备”这一核心问题,以基于RaNER模型的NER WebUI服务为例,系统分析了轻量化改造的可行性路径,并完成实际验证。技术上完全可行:通过模型量化(INT8)+ 推理引擎优化(ONNX/OpenVINO)+ 系统裁剪(去重前端)的组合策略,可将原本需1.3GB内存的服务压缩至700MB以内,适配主流边缘设备。性能代价可控:在树莓派4B上,单次推理延迟约为210ms,虽不及GPU加速环境,但对于非实时交互类应用(如文档处理、日志分析)已具备实用价值。

2026-01-10 13:25:23 699

原创 Qwen3-VL-WEBUI边缘部署方案:从云端到终端的算力适配指南

本文系统介绍了在边缘设备上的部署方案,涵盖技术原理、环境搭建、性能优化与典型应用。通过合理配置,我们成功在单张 RTX 4090D 上实现了 Qwen3-VL-4B-Instruct 的高效推理,验证了其在本地化、低延迟、高安全性场景下的巨大潜力。核心要点回顾:1.Qwen3-VL-4B-Instruct 是专为边缘优化的高性能多模态模型,兼顾能力与资源消耗;2.WEBUI 提供零代码交互体验,适合非技术人员快速上手;3.Docker化部署简化了环境依赖,一键启动即可访问;4.

2026-01-10 11:15:56 103

原创 Qwen3-VL网络优化:低延迟传输方案

本文围绕Qwen3-VL-WEBUI 的低延迟传输需求感知保持的图像压缩算法,在保证语义完整性的同时大幅减小传输体积;WebSocket 流式上传机制,实现“边传边处理”,有效隐藏网络延迟;KV Cache 缓存复用技术,显著降低多轮交互的重复计算开销;边缘部署 + CDN 加速架构,提升全球用户的访问速度和稳定性。这些优化不仅适用于 Qwen3-VL,也可推广至其他多模态大模型的 Web 交互系统。未来我们将进一步探索模型切片传输和客户端轻量化预编码,持续逼近“零等待”推理体验。💡。

2026-01-10 07:45:13 649

原创 Qwen2.5-7B网络优化:分布式推理加速

本文围绕Qwen2.5-7B 在网页服务中的分布式推理优化模型层面:Qwen2.5-7B 凭借 GQA、RoPE、SwiGLU 等先进架构,在保持较小体积的同时支持 128K 上下文与多语言能力。推理层面:通过张量并行(TP=4)+ PagedAttention + Continuous Batching实现高吞吐、低延迟推理。部署层面:结合 GPTQ 4-bit 量化,在 4×4090D 上实现稳定服务,显存仅占 3.8GB,支持 20+ 并发。应用层面。

2026-01-10 06:26:49 397

原创 Qwen2.5-7B部署排错:常见问题解决方案大全

硬件资源不足:通过模型并行与量化缓解显存压力镜像拉取失败:检查网络、权限与加速配置Web 服务不可达:确保端口暴露与反向代理正确接口返回异常:加强输入校验与输出容错上下文管理失效:规范对话模板与缓存机制多语言支持缺陷:统一编码与前端适配优先使用优化推理框架:推荐 vLLM 或 TGI 替代原生加载严格控制输入长度:防止因超长上下文引发 OOM建立完整监控链路:实现快速定位与自动告警定期更新模型镜像:关注阿里官方发布的 patch 版本。

2026-01-10 03:41:25 180

原创 Qwen2.5-7B决策支持:商业分析辅助系统搭建

Qwen2.5-7B 凭借其强大的结构化数据理解能力、长上下文支持、高质量 JSON 输出特性,成为构建商业分析辅助系统的理想选择。通过将其集成到网页服务中,企业可以快速打造一个支持自然语言交互的智能 BI 助手,显著降低数据分析门槛。

2026-01-10 03:17:37 193

原创 Sambert-HifiGan模型训练:如何准备高质量语音数据

✅ 成功训练的前提是:干净、一致、结构化的数据[ ] 所有音频为 24kHz、单声道、WAV 格式[ ] 文本已完成清洗与正则化[ ] 每条语音均完成强制对齐[ ] 数据已按发音人划分训练/验证/测试集[ ] 情感标签完整且格式统一[ ] 异常样本(噪声、静音、错配)已被剔除[ ] 元数据文件(metadata.csv)字段正确分隔[ ] 在小样本上完成端到端流程验证。

2026-01-09 17:17:36 565

原创 Sambert-HifiGan投入产出分析:如何在2个月内回收GPU投资

emotion = data.get('emotion', 'neutral') # 默认中性情感try:💡说明:每次合成生成唯一命名的.wav文件,存储于static/目录供前端访问。Sambert-HifiGan 不仅是一个优秀的学术成果,更是极具商业潜力的技术资产。通过合理的工程封装与服务设计,完全可以将其转化为可持续盈利的AI语音服务平台。🔚核心结论1.技术成熟:模型质量高,支持多情感,满足多样化需求;2.部署简单:Flask集成+依赖修复,实现“一键启动”;3.成本可控。

2026-01-09 16:45:09 249

原创 Sambert-HifiGan在在线客服中的多轮对话语音合成

import os# 初始化语音合成 pipeline# 添加情感标记try:# 执行语音合成本文围绕Sambert-HifiGan 模型,完成了从技术原理剖析到工程落地实践中文多情感语音合成的技术实现路径Flask 服务中的依赖冲突与稳定性问题WebUI 与 API 双模服务能力构建多轮对话语境下的情感适配机制✅最终成果:一个开箱即用、稳定高效、支持情感控制的中文语音合成服务,完美适用于在线客服、虚拟助手、教育播报等场景。

2026-01-09 15:42:06 263

原创 Sambert-HifiGan中文多情感语音合成:从零开始完整教程

路径 | 方法 | 功能 || GET | 返回 WebUI 页面 || POST | 接收 JSON 文本,返回音频 URL |/audio| GET | 返回最新生成的.wav文件 |本教程完整实现了基于稳定环境搭建(解决冲突)Flask WebUI 开发(含前端交互与音频播放)标准 API 接口设计实际部署与性能优化建议✅核心价值总结你获得的不仅是一个 Demo,而是一套可复用、可扩展、工业级可用的轻量 TTS 服务模板。

2026-01-09 15:32:00 425

原创 RESTful接口设计:让AI视频生成服务化

遵循资源导向明确边界职责Web服务只负责接收请求和返回状态,不参与实际推理。合理设置超时客户端轮询间隔 ≥ 5秒任务最长存活时间 ≤ 300秒(防止堆积)错误码规范化| HTTP状态码 | 含义 | 建议动作 || 任务已接收 | 开始轮询 || 参数错误 | 检查JSON格式 || Token无效 | 重新获取Token || 请求过频 | 指数退避重试 || 服务繁忙 | 等待后重试 |提供SDK简化集成# Python SDK 示例**kwargs# 使用方式。

2026-01-09 15:15:23 522

原创 ATmega328P看门狗定时器在Uno R3中的启用方法

介绍如何在Arduino Uno R3开发板上激活ATmega328P的看门狗定时器,提升系统稳定性与抗干扰能力,适用于长时间运行的嵌入式项目。

2026-01-09 14:26:44 218

原创 完整指南:RS485和RS232接口引脚定义及接法差异

深入解析RS485和RS232在引脚定义及接线方式上的不同,从通信距离到抗干扰能力全面对比,帮助理解rs485和rs232区别总结的关键要点。

2026-01-09 12:29:48 570

原创 ioctl与 unlocked_ioctl 的区别与演进:深度剖析

深入探讨ioctl与unlocked_ioctl的演变过程,解析其在内核发展中的关键变化,重点剖析ioctl机制的设计改进与实际应用差异,揭示现代驱动开发中的最佳实践。

2026-01-09 11:19:54 414

原创 VIT与CRNN对比:轻量级OCR任务谁更胜一筹?实测结果来了

特征提取:使用CNN主干网络(如ResNet、VGG)从输入图像中提取二维空间特征图;序列建模:将特征图按列切片送入双向LSTM,形成对字符顺序的时序建模;输出预测:结合CTC(Connectionist Temporal Classification)损失函数,实现无需对齐的字符序列学习。💡 优势本质CRNN本质上是一个“空间→序列”的转换器,特别适合处理不定长文本行,且在中文这种多类别、易混淆字符集上具备天然鲁棒性。请求参数image: 文件字段,上传图像返回示例"data": [

2026-01-09 07:27:47 444

原创 CSANMT模型监控:漂移检测与预警

模型漂移是指模型在生产环境中运行一段时间后,由于输入数据或目标变量的统计特性发生变化,导致其预测性能显著下降的现象。对于翻译系统而言,即使模型参数未更新,也可能因用户输入风格变化(如网络用语增多、专业术语演进)而出现“越翻越不准”的问题。📌 核心洞察漂移不等于错误,而是性能缓慢劣化的过程。等到用户投诉才发现问题,往往为时已晚。CSANMT作为高性能的轻量级翻译模型,其价值不仅体现在初始精度上,更在于能否长期稳定服务于真实用户。通过构建“感知—分析—预警—响应📌 提前发现隐患,而非事后救火。

2026-01-09 07:16:47 422

原创 5个高可用OCR开源镜像推荐:支持中英文识别,WebUI一键调用

OCR技术已从“能不能识别”进入“好不好用”的新阶段。CRNN类模型凭借其轻量与高效,仍是边缘设备和CPU环境下的首选;PaddleOCR展现了国产开源力量的强大整合能力,成为工业界事实标准;DocTR等新兴架构正在推动OCR向“文档理解”跃迁,开启智能化新篇章。💡 核心结论对于大多数中英文识别需求,基于CRNN的轻量级Web服务镜像是一个理想的平衡点——它兼顾了精度、速度与易用性,真正实现了“一键部署、即刻可用”。

2026-01-09 07:01:05 382

原创 CSANMT模型微服务化部署:容器化实践指南

本镜像基于 ModelScope 的CSANMT (神经网络翻译)模型构建,专为中文到英文翻译任务优化。相比传统NMT模型,CSANMT引入了条件语义增强机制,在长句连贯性、专业术语准确性和语言风格自然度方面表现优异。系统已集成Flask Web 服务框架,提供直观的双栏式WebUI界面,并开放RESTful API供程序调用。所有依赖库版本经过严格锁定,确保跨平台部署稳定性。整个服务以轻量级Docker容器形式交付,适用于本地开发、测试验证及生产环境部署。💡 核心亮点高精度翻译。

2026-01-09 06:28:11 608

原创 零售小票识别系统:3步部署OCR服务上线

本镜像基于 ModelScope 开源平台的经典模型进行封装与工程化升级。相比传统的CNN+Softmax分类模型,CRNN 结合了卷积神经网络(CNN)的特征提取能力与循环神经网络(RNN)的序列建模优势,特别适合处理不定长文本行的识别任务。该服务已集成 Flask 构建的 WebUI 界面,并开放标准 RESTful API 接口,适用于发票、小票、文档、路牌等多种真实场景下的文字识别需求。💡 核心亮点模型升级:由 ConvNextTiny 切换至CRNN。

2026-01-09 06:23:14 530

原创 模型压缩技术揭秘:CSANMT如何做到轻量又高性能

本项目基于ModelScope平台提供的模型进行深度优化与封装,专为中文→英文翻译任务设计。原始CSANMT模型已在多个公开数据集上展现出优于传统Transformer的翻译流畅度与语义保真度。然而,直接部署原生模型面临三大挑战:- 模型体积大,加载慢- 推理耗时长,响应延迟高- 对硬件依赖强,难以在CPU上运行为此,我们通过一系列模型压缩与工程优化手段,成功将其转化为一个可在普通x86 CPU上高效运行的轻量级服务,同时保持95%以上的原始翻译质量。💡 核心亮点回顾高精度翻译。

2026-01-09 05:18:31 679

原创 如何让译文更符合英语习惯?神经网络模型来帮忙

神经网络翻译模型的出现,标志着机器翻译从“能翻”迈向“翻得好”的新时代。CSANMT 凭借其上下文感知能力和对中英语言差异的深刻建模,显著提升了译文的自然度与地道性。本文介绍的这套 AI 翻译服务,不仅提供了开箱即用的 WebUI 和 API 接口,更重要的是展示了如何将前沿 NLP 模型落地为稳定可靠的工程系统。通过合理的架构设计、严格的环境控制和智能化的结果处理,即使是资源有限的 CPU 设备,也能胜任高质量翻译任务。🎯 核心价值总结技术层面:实现了从“机械转换”到“语义理解”的跃迁工程层面。

2026-01-09 05:13:17 619

原创 M2FP模型在智能门禁中的人体特征识别

M2FP模型凭借其高精度人体部位分割能力CPU友好型设计以及完整的前后端闭环,正在成为智能门禁系统中不可或缺的一环。它不仅拓展了传统生物识别的技术边界,也为复杂环境下的人员感知提供了可靠的数据支撑。

2026-01-09 04:01:49 884

原创 M2FP在公共安全中的应用:可疑行为识别

高精度语义理解:超越bbox框和关键点,获得真正的“人体语义地图”无需GPU也能跑:极大降低部署门槛,适合老旧安防系统升级WebUI友好易用:非技术人员也可快速验证效果生态完善:依托ModelScope平台,模型可持续迭代M2FP凭借其卓越的多人人体解析能力,正在成为公共安全领域智能视觉分析的新基建。本文展示了如何将这一前沿AI能力转化为可落地的服务系统,并成功应用于地铁异常行为监测场景。未来发展方向包括:与ReID技术融合:实现跨摄像头人体部位级追踪引入时序建模。

2026-01-09 03:20:23 384

原创 M2FP模型在虚拟社交中的人体形象生成技术

M2FP 多人人体解析服务以其高精度、强稳定性、低部署门槛三大特性,为虚拟社交场景下的数字形象生成提供了坚实的技术底座。工程可用性强:解决了 PyTorch 与 MMCV 的经典兼容难题,真正实现“零报错启动”;功能完整闭环:不仅提供模型推理,更集成了可视化拼图与 Web 交互界面;适用广泛:无论是个人开发者尝试 AI 形象编辑,还是企业构建私有化形象生成平台,均可快速集成。

2026-01-08 17:57:51 517

原创 M2FP模型内存管理:避免OOM的实用技巧

M2FP 模型虽强大,但在资源受限环境下部署需精细化内存管理。本文提出的五项核心技巧——禁用梯度、分块推理、特征释放、流式后处理、内存回收调优——构成了一个完整的 OOM 防御体系。📌 核心价值总结原理清晰:直击 PyTorch 推理内存瓶颈本质工程可用:每项技巧均经真实项目验证成本低廉:无需硬件升级即可提升稳定性结合合理的服务治理策略(限流、降级、监控),即使是纯 CPU 环境也能稳定支撑多人人体解析任务,真正实现“零报错、低延迟、高可用”的生产级部署目标。🚀 下一步建议。

2026-01-08 17:52:59 454

原创 如何用M2FP提升视频监控的识别准确率?

M2FP 是基于Mask2Former 架构优化的人体解析专用模型,专注于解决真实场景中“多人+重叠+遮挡”的复杂挑战。与传统目标检测仅输出人物外接矩形框不同,M2FP 能够对图像中每个个体进行细粒度语义分割面部、头发、左/右眼、左/右耳上衣、外套、裤子、裙子、连衣裙左/右手臂、左/右腿、左/右脚背包、帽子、手提包、鞋子这种像素级别的解析能力,使得系统不仅能“看到人”,还能“理解人的穿着、姿态和局部特征”,为后续的身份比对、行为分析、异常动作识别提供高质量结构化输入。💡 技术类比。

2026-01-08 16:50:24 601

原创 USB接口入门全解析:数据传输机制认知

深入解析usb接口的工作原理与数据传输机制,帮助理解设备间通信方式,掌握usb接口在现代电子设备中的关键作用。

2026-01-08 14:24:08 401

原创 Markdown文档生成AI图:Z-Image-Turbo与Typora集成方案

通过将与Typora深度集成,我们实现了:✅零切换成本:全程在 Markdown 编辑器中完成图文创作✅高匹配度图像:基于上下文提示词精准生成视觉内容✅本地化安全可控:所有数据保留在本地,无泄露风险✅可扩展性强:支持参数化、缓存、异步等高级功能这不仅是一次工具整合,更是内容创作范式的升级——从“先写后配图”变为“边写边出图”,极大提升了信息表达的密度与效率。

2026-01-08 11:33:32 742

原创 使用MGeo做电商收货地址归一化的完整流程

缩写与全称混用:如“北京” vs “北京市”顺序颠倒:如“朝阳区建国路” vs “建国路朝阳区”别名与俗称:如“中关村” vs “海淀中关村大街”标点与空格差异:如“漕溪路255号” vs “漕溪路 255 号”这些问题使得基于字符串精确匹配或模糊检索的方法效果有限。而 MGeo 的出现,正是为了解决这类语义层面的地址一致性判断问题。本文系统介绍了如何利用阿里开源的 MGeo 模型实现电商收货地址的高效归一化处理。

2026-01-08 11:28:20 638

原创 超详细版UDS协议入门教程:适合嵌入式新手

深入浅出讲解uds协议的核心概念与应用,特别适合嵌入式初学者。通过实例解析uds协议在汽车电子中的实际运用,帮助快速掌握诊断通信基础。

2026-01-08 11:27:49 474

原创 Z-Image-Turbo与Codex协同:AI全栈开发新范式

不是人在写代码,而是人在告诉AI怎么写代码。本文介绍的“Z-Image-Turbo + Codex”协同范式,本质上是一种认知负荷转移:将开发者从繁琐的语法细节中解放出来,专注于更高层次的逻辑设计与价值判断。对于企业和个人而言,拥抱这一变化的关键在于:- 学会用精确的语言描述需求- 建立插件化、可组合的系统思维- 构建人机协作而非“人替AI打工”的新型工作流当你下次需要开发一个AI图像应用时,不妨先问问自己:“这个问题,能不能用一句话让AI帮我写出来?

2026-01-08 11:16:07 761

原创 是否需要标注数据?MGeo预训练模型开箱即用无需标注

MGeo 的最大突破在于打破了“必须标注才能用”的传统范式。它通过大规模无监督预训练,在中文地址这一垂直领域实现了“开箱即用”的高性能匹配能力。一句话总结:如果你正在处理中文地址相似度问题,且希望避免高昂的标注成本,MGeo 是当前最值得尝试的解决方案之一。

2026-01-08 07:22:34 821

原创 MGeo部署常见问题及解决方案汇总

核心结论:MGeo 的部署难点不在模型本身,而在环境一致性与细节把控。环境问题:通过conda init和显式安装依赖确保环境完整;依赖缺失:使用官方源安装带 CUDA 的 PyTorch,避免 CPU-only 版本;GPU 不可用:检查配置与容器启动参数;中文路径兼容性:优先使用英文命名,避免潜在编码问题;Jupyter 访问失败:正确映射端口并获取访问 token。此外,建议:- 将成功环境打包为 Docker 镜像,提升可移植性;

2026-01-08 06:59:52 633

原创 零售门店数据整合:MGeo实现连锁品牌地址标准化

MGeo 的出现标志着中文地址处理进入了语义智能时代。对于连锁零售企业而言,它的价值不仅在于“去重”,更在于构建一套可信的门店主数据体系。1. 精准性:基于深度学习的语义理解,超越字符层面的机械匹配2. 高效性:单卡即可支撑千级门店地址对的分钟级处理3. 可控性:本地化部署,保障数据隐私与系统稳定性未来,随着更多行业开始重视“位置即资产”的理念,MGeo 还可拓展至物流配送路径优化、商圈热力分析、竞品门店监控等高级应用场景。

2026-01-08 06:07:40 892

原创 数据管道中断排查:MGeo上下游依赖服务健康检查清单

MGeo 作为中文地址语义匹配的先进工具,已在多个行业落地应用。但其在生产环境中的稳定性不仅取决于模型本身,更依赖于整个上下游系统的健康状态。本文围绕“数据管道中断”这一高频问题,提出了一套完整的健康检查清单,涵盖模型、硬件、输入、依赖、权限五大维度,帮助团队快速定位故障根源。核心结论一个健壮的 MGeo 服务不应只是“能跑起来”,更要做到“持续稳定运行”。自动化巡检 + 日志监控 + 快速恢复机制,才是保障数据管道畅通的关键。

2026-01-08 04:58:20 614

原创 万物识别-中文通用领域模型使用指南(含完整操作流程)

万物识别”并非仅限于分类1000类物体的经典ImageNet任务,而是指模型具备开放域、细粒度、语义丰富的图像理解能力。识别非常见物品(如“复古留声机”、“登山杖”)理解场景上下文(如“办公室会议中”、“户外野餐”)输出带动作和情感色彩的描述(如“孩子开心地吹泡泡”)这类能力依赖于视觉-语言联合建模架构(Vision-Language Model),通过对比学习让图像编码器与文本编码器对齐,从而实现跨模态语义匹配。✅ 如何激活并使用py311wwts环境✅ 复制与修改推理脚本的标准流程。

2026-01-08 03:25:30 562

对象模型示意图-05_simatic_wincc_生产线自动化系统信息化平台_v2

5.1 对象模型示意图 通信应用层 TCP 管理 配置层 接口用户应用 接口指示报文传输 接口响应报文传输 用户应用 图 18:MODBUS报文传输服务对象模型示意图 四种主要程序包构成对象模型示意图: l 配置层,它配置和管理其它程序包组件的操作模式 l TCP管理,它使 TCP/IP栈和管理 TCP连接的通信应用层连接。这指的是套接字接口的 管理。 l 通信应用层,它由在一侧的 MODBUS 客户机和在另一侧的 MODBUS 服务器组成。该 程序包和用户应用链接。 l 用户应用,它和设备应用相对应,它完全与设备有关,因此在本文件中不予讨论。 本模型与实现的选择无关,例如:OS 类型、存储管理等。为保证这种无相关性,在 TCP 管理 层和通信层之间以及在通信层和用户应用层之间使用普通界面层(generic Interface layers)。 有不同的实现方法实现该界面:两项任务之间的传输、共享存储器、串行链接界面、过程呼叫

2021-06-02

许可证管理器-tomcat_web安全基线配置要求

第九章 CoDeSys许可证管理    9 CoDeSys许可证管理    9.1许可证管理器  3S许可证管理器处理 3S技术模块许可证,提供计算机上使用模块的一个适当的许可证 信息文件。在 CoDeSys  您可以创建一个项目,并提供它作为许可库。任何 3S技术模块将自 动安装授权管理器,这需要一个许可证。另见单独的文件 3S技术授权管理器,提供了 CoDeSys 创建一个授权库,见第 9.1.1 节  。    9.2建立 CoDeSys授权库  众所周知 CoDeSys项目可以被保存为一个库。如果你想创建一个授权库,必须添加相应 的许可证信息。此执行命令' File'Save 作为...',选择数据类型为内部库或外部库,按下‘编辑 许可信息’按钮,在对话框编辑输入许可信息介绍如下。  许可信息将被添加到该项目信息。此后,库将被纳入 CoDeSys  项目,许可证信息可以 在库管理器的库对象特性对话框检查。  Dialog: Edit Licensing Information 通用信息:    名称:输入一个名称为库模块在 3S技术许可管理器的标志,这种输入是强制性的。  厂商编号:制造商标识,取决于具体的 manfacturer  特定许可管理工具。  演示模式:启用此选项,如果模块应可在演示模式,这意味着在没有任何许可证编号。 输入的天数后, “演示许可证”应到期。天数将自动四舍五入到下一个数是整除  10 (  10  ,  ‐ 9‐1 ‐ 

2021-06-02

时钟切换-5g和mec在工业互联网中的应用探讨

2.9 时钟切换 使用OSCCON寄存器的系统时钟选择(SCS<1:0>)位, 可通过软件在外部和内部时钟源之间切换系统时钟源。 PIC18(L)F2X/4XK22 器件包含的电路可防止在切换时 钟源时发生时钟 “毛刺”。在切换时钟时,器件时钟会 有短暂的停顿。该停顿的时间长度是旧时钟源的两个周 期与新时钟源的三到四个周期的和。此公式假设新时钟 源是稳定的。 第 3.1.2 节“进入功耗管理模式”详细讨论了时钟转换。 2.9.1 系统时钟选择 (SCS<1:0>)位 OSCCON 寄存器的系统时钟选择(SCS<1:0>)位选择 用于 CPU 和外设的系统时钟源。 • 当 SCS<1:0> = 00 时,系统时钟源由 CONFIG1H 配置寄存器中 FOSC<3:0> 位的配置决定。 • 当SCS<1:0> = 10时,系统时钟源由内部振荡器频 率选择,而内部振荡器频率通过OSCTUNE寄存器 的 INTSRC 位、OSCCON2 寄存器的 MFIOSEL 位 和 OSCCON 寄存器的 IRCF<2:0> 位选择。 • 当 SCS<1:0> = 01 时,系统时钟源是与 Timer1、 Timer3 和 Timer5 共用的 32.768 kHz 辅助振荡器。 复位之后,OSCCON寄存器的 SCS<1:0> 位总是清零。 2.9.2 振荡器起振延时状态 (OSTS)位 OSCCON 寄存器的振荡器起振延时状态(OSTS)位 指示系统时钟是来自外部时钟源 (通过 CONFIG1H 配 置寄存器中的 FOSC<3:0> 位定义),还是来自内部时 钟源。当主振荡器为主时钟源时,OSTS 还特别指明在 LP、XT 或 HS 模式下,振荡器起振定时器(OST)是 否已超时。 振荡器模式 OSC1 引脚 OSC2 引脚 RC、 INTOSC 与 CLKOUT 悬空,应通过外部电阻拉高 处于逻辑低电平 (时钟 4 分频输出) RC 与 IO 悬空,应通过外部电阻拉高 配置为 PORTA 的 bit 6 INTOSC 与 IO 配置为 PORTA 的 bit 7 配置为 PORTA 的 bit 6 EC 与 IO 悬空,由外部时钟驱动 配置为 PORTA 的 bit 6 EC 与 CLKOUT 悬空,由外部时钟驱动 处于逻辑低电平 (时钟 4 分频输出) LP、 XT 和 HS 反馈反相器在静态电压时被禁止 反馈反相器在静态电压时被禁止 注: 关于由休眠和 MCLR 复位引起的延时,请参见第 4.0 节“复位”中的表 4-2。 注: 任何自动时钟切换(可能产生自双速启动 或故障保护时钟监视器)都不会更新 OSCCON 寄存器的 SCS<1:0> 位。用户可 以监视 OSCCON2 寄存器的 SOSCRUN、 MFIOFS和 LFIOFS位以及OSCCON寄存 器的 HFIOFS 和 OSTS 位,以确定当前的 系统时钟源。 2011 Microchip Technology Inc. 初稿 DS41412D_CN 第 41 页

2021-06-02

环境贴图-dassidirect server

11.2 环境贴图 立方体贴图的主要用途是实现环境贴图映射(environment mapping)。它的实现思路是: 在场景中的某个物体 O 的中心位置放置一架摄像机,将(水平和垂直)视域角设为 90º。 然后沿着 ± 轴、± 轴和 ± 轴方向,从 6种不同的角度各拍摄一张照片(在照片中不 包含物体 O)。因为视域角为 90º,所以这 6张照片完全可以从物体 O的角度捕捉到各个方 向上的环境信息(参见图 11.2)。我们把这 6 张照片存入到一个立方体贴图中,就得到了 所谓的环境贴图。换句话说,环境贴图就是在立方体平面上存入一个环境的全景照片。 图 11.2:将立方体贴图“展平”后就得到了一幅环境贴图。设想,将这 6个平面重新折叠为一个 3D立方 体,然后站在立方体的中心。从每个方向上,你都可以看到一个连续的场景环境。 上述内容表明,在场景中有多少个使用环境贴图映射的物体,我们就必须创建多少个环境贴

2021-06-02

几何体信息-dassidirect server

14.2 几何体信息 下面列出了在处理网格的顶点和索引时一定会用到的 ID3DX10Mesh方法: n HRESULT ID3DX10Mesh::GetIndexBuffer(ID3DX10MeshBuffer **ppIndexBuffer); 该方法通过ppIndexBuffer参数返回一个包含索引数据的ID3DX10MeshBuffer对象指 针。 n UINT ID3DX10Mesh::GetVertexBufferCount(); 返回网格中的顶点缓冲区的数量。一个网格可以使用多个顶点缓冲区,每个顶点缓冲区可以 被绑定到不同的输入槽上(回顾第 5章的练习 2)。例如,用一个顶点缓冲区来存储位置元 素,用另一个顶点缓冲区来存储颜色元素。由 D3D10_INPUT_ELEMENT_DESC数组描述的 网格顶点格式指定了是否使用多个输入槽。也就是,当 D3D10_INPUT_ELEMENT_DESC数 组的元素被绑定到不同的输入槽时,多顶点缓冲区会被启用。 n HRESULT ID3DX10Mesh::GetVertexBuffer(UINT iBuffer, ID3DX10MeshBuffer **ppVertexBuffer); 第一个参数指定了将要获取的顶点缓冲区的编号。如果网格包含 个顶点缓冲区,那么顶 点缓冲区的编号为 0 到 − 1。第二个参数会返回一个包含顶点缓冲区数据的 ID3DX10MeshBuffer对象指针。 n UINT ID3DX10Mesh::GetVertexCount(); 该方法返回网格中的顶点数量。 n UINT ID3DX10Mesh::GetFaceCount(); 该方法返回网格中的(三角形)平面数量。 n UINT ID3DX10Mesh::GetFlags(); 该方法返回网格创建时指定的标志值。返回值可能是 0、1或以下两个标志值(这些标志值 可以用按位或运算符组合起来): ° D3DX10_MESH_32_BIT:网格使用 32 位索引。如果未指定该标志值,则网格使 用 16位索引。

2021-06-02

访问控制模型的比较-java 实现发短信功能---腾讯云短信

1.3 模型改进 在 RBAC 模型基础上,增加以用户 ID 命名的 XML 文档, 对会话期间用户同角色之间的激活关系作了改进,提出了改 进的基于角色的访问控制模型 XML-RBAC,如图 2 所示。 XML-RBAC模型基于用户-角色-权限的三级访问控制结 构,在权限管理分配上同 RBAC 模型一致,即权限分配给角 色,角色委派给用户。在用户权限的获取方式上,改变了RBAC 模型在会话中合并角色权限集的获取方式,采用从用户 ID 命 名的 XML 文档中读取的方式。模型元素 XML 文档使用用户 ID命名,用以保存用户在系统中的静态权限集,其值通过合并 用户所委派角色的权限集得到,为实现在异源异构系统中共 享权限分配数据而以独立实体形式存在。XML 文档对用户透 明,用户登录系统后无法浏览查询 XML 文档的内容信息; XML 文档对权限管理员透明,其保存的静态权限集等信息的 维护由模型自动完成,无需权限管理员的管理维护,权限管理 员在进行系统权限管理时,也感受不到 XML 文档的存在。用 户权限集的 XML 文档格式示例如图 3 所示。 1.4 业务流程调整 (1) 权限获取流程。用户进行系统访问可划分为身份验 证、权限获取、系统功能访问 3 个阶段。在 XML-RBAC 模型 的权限获取阶段,模型从文件名为用户 ID 的 XML 文档中进 行用户权限的获取。 (2) 权限管理流程。权限管理员的权限管理工作主要包 括用户、角色、客体、操作、权限等实体及其关系的管理维护。 涉及用户权限变更的维护动作有用户-角色委派关系和角色- 权限分配关系的管理维护。权限管理员在进行以上关系的 维护时,把涉及权限变更的用户写入数据表中,并标记状态 为未处理状态,关系维护完成时,再逐一对表中状态为未处 理的用户进行处理,根据用户所委派角色合成权限集并重写 相应的XML文档,更新其状态为已处理,从而实现用户权限 变更机制。 1.5 权限验证统一接口 设计统一的权限验证方法接口,同时针对不同的开发语 言实现相应的验证组件。方法描述如下: Boolean privilege_verify (String xml_path, String user_id, String object_id,String oprate_id); 该方法有 4 个参数,第 1 个参数是XML文档的系统路径; 第 2 个参数是用户 ID,作为 XML 文件名进行文档的读取,同 时因为产生的XML文档中子元素 user 的属性 userid中记录该 文件的 userid 值,因此该参数又起到验证 XML 文档数据内容 的作用;第 3 个参数是系统功能对象 ID;第 4 个参数是针对功 能对象可执行的操作 ID。方法返回值为布尔类型,如果有权 限则返回 true,无权限则返回 false。 1.6 访问控制模型的比较 通过表 1 可以看出,XML-RBAC 模型仍具有传统 RBAC 模型的权限分配管理的体系结构、灵活性和优势。由于采用 XML 文档存储用户权限,可以实现用户权限的系统无关性, 降低了模型对应用系统的依赖,增强 le 权限管理系统的通用 性。对于用户权限相对稳定的系统,因其用户权限直接从XML 文档中读取,而不必进行角色权限集的合并运算,在用户权限 图 1 RBAC 模型 DSD S 会话 U 用户 R 角色 OPS 操作 OBS 客体 角色层 次 RH SSD 用户委 派 UA 权限委 派 PA P 权限 图 2 改进的 RBAC 模型 DSD XML 文档 U 用户 R 角色 OPS 操作 OBS 客体 角色层 次 RH SSD 用户委 派 UA 权限委 派 PA P 权限 图 3 用户权限集的 XML 文档 表 1 访问控制模型的比较 RBAC XML-RBAC 访问控制结构 支持职责分离 支持角色继承 最小权限原则 同应用系统的耦合性 通用性 高效性(用户权限稳定) 自适应性 三层 是 是 满足 强 弱 弱 弱 三层 是 是 满足 弱 强 强 强

2021-06-02

试运行准备-problem-solving-with-algorithms-and-data-structure-using-python 中文版

14.1 试运行准备 14.1 试运行准备 14.1.1 准备检查 【电源OFF】 电源端子的错误连接、DC输入接线与电源线的混淆、输出接线的短路等情况都会导致产生重大损坏。 因此, 上电之前,请务必检查电源与接地的连接、输入输出等的接线是否正确。 14.1.2 连接到内置的编程口(RS-422) 1. 连接外围设备时 要连接或拆除与外围设备之间的通信电缆。 连接时,对准电缆和主机上的 「对位置用标记」。 2. 外围设备(GOT等)要一直连接时 利用切刀等工具将连接外围设备的连接器盖板(基本单元)的以下部分(左下图)切下,如右下图所示,与外围设 备连接。 3. 外围设备(GOT等)要一直连接时(使用连接器转换适配器时) 利用切刀等工具将连接器转换适配器的以下部分(左下图)切下,如右下图所示,与外围设备连接。 备注 测量可编程控制器的耐压以及绝缘电阻时,依据下列要领。 1) 拆下所有的可编程控制器的输入输出接线,以及电源线。 2) 除了可编程控制器的接地端子以外, 用连接线逐个连接各个端子(电源端子, 输入端子, 输出端子)。 各端子的耐压,请参考产品规格中的一般规格(参考4.1节)。 3) 请在各端子与接地端子之间进行测量。 耐压: AC1.5kV或是、500V 1分钟(根据端子不同, 耐压也不同。 ) 绝缘电阻: 用DC500V兆欧表测5MΩ以上

2021-06-02

串联控制-web vulnerability scanner v8

1.7 串联控制 概要 在驱动一个大工作台时仅仅依赖一台电机得不到足够扭矩的情况下,可以用 2 台 电机使 1 个轴运行。 主控轴只用来定位,从控轴只用来产生扭矩。通过这一功能,可以得到 2 倍的扭 矩。 主控轴 从控轴 工作台 滚珠丝杠 实施例 NC 控制单元基本上把串联控制作为一个轴来处理。但是,对于伺服参数管理和 伺服报警监视,把串联控制作为 2 个轴来处理。

2021-06-02

基于报警的回退功能-web vulnerability scanner v8

(1) 基于外部信号的回退功能 当回退信号 RTRCT 被设为“1”时(捕捉信号的上升沿),通过由参数设定 的回退量(参数(No.7741))及速度(参数(No.7740))进行回退。 回退量被设定为 0 时,轴不会移动。 待回退结束后,输出回退结束信号 RTRCTF。 (2) 基于报警的回退功能 EGB 同步中或者在自动运行中,CNC 报警时,按照由参数设定的回退量(参 数(No.7741))以及速度(参数(No.7740))执行回退操作。 由此可以防止发生报警时的刀具和工件的损坏等事故于未然。 回退量被设定为 0 时,轴不会移动。 待回退结束后,输出回退结束信号 RTRCTF。 执行基于报警的回退功能的条件 通过参数 ARE(No.7703#1)、ARO(No.7703#2)的设定,可以变更基于报警的 回退功能的执行条件。 有关参数的设定和动作,如下表所示。 ARE ARO 动作 "1" "0" EGB 同步中 "1" "1" EGB 同步中并且是自动运行中 "0" "0" "0" "1" EGB 同步中或在自动运行中 同步系数

2021-06-02

紧急停止-web vulnerability scanner v8

2.1 紧急停止 概要 如果您按下机床操作面板上的紧急停止按钮,则在紧急情况下立即停止机床的移 动。 图 2.1 (a) 紧急停止 紧急停止按钮被按下时即被锁定。解除锁定的方法然随机床制造商的不同而有差 异,但通常只要扭转按钮可解除锁定。 信号 紧急停止(输入)*ESP<X008.4, Gn008.4> [分类] 输入信号 [功能] 发生紧急情况时瞬时停止机床的移动。 [动作] 信号*ESP 成为’0’时,CNC 即被复位,进入紧急停止状态。通常情况下通过按钮 开关的 B 接点来指令该信号。通过紧急停止伺服准备就绪信号(SA)就成为’0’。 本 CNC 中,其基本规格是通过存储行程检测功能来进行超程检测。无需通常的 用于超程检测的极限开关。但是,机床因伺服反馈系统的故障而越过软件极限移 动时,为了使其停下,务必设置行程检端极限开关。按照如图 2.1 (b)所示方式进 行连接。 图 2.1 (b) 紧急停止用极限开关的连接 动态制动器引起的停止距离,请参阅 AC SERVO MOTOR 规格说明书。 非常停止用リミットスイッチ リレー用電源 スパークキラー +X -X +Y -Y +Z -Z +4 -4 非常停止一時解除 EMG SK 继电器用电源 灭弧器 紧急停止用极限开关 紧急停止暂时解除

2021-06-02

>和齿轮选择信-web vulnerability scanner v8

如果需要进行齿轮切换,则输出 S 功能代码读取信号 SF<F007.2>和齿轮选择信 号 GR3O, GR2O, GR1O <F034.2, 1, 0>并通知 PMC。请利用 PMC,按照这些信号 进行齿轮切换。

2021-06-02

纹理坐标节点显示一幅图像-computer science- an interdisciplinary approach

图5.3纹理坐标节点显示一幅图像

2021-06-02

支持完全的拓扑提取-煤矿井下搜救探测机器人结构设计

8.3 支持将约束赋给网络 SPB15.2 也支持将约束赋给网络。注意:ECSet 仅仅当应用给网络或者网络对象或者使用 Audit->Electrical Cset 菜单命令创建报告才是有效的。应用给网络对象的约束不会反标给原理图 的。 在约束管理器中选择网络按右键选择 Electrical Cset References,或者点击对应的 Referenced Electrical Cset 栏,选择约束名称。 如果将约束赋给总线,总线中的所有成员都会继承 ECSet 中的管脚对约束。 如果拓扑与网络不匹配的话,Referenced Electrical Cset 栏就会显示为红色。状态栏也会显 示为不匹配的原因。如果关闭了约束管理器,红色标识会丢失。约束管理器提供评估选项,并 重建红色标识并出详细的报告,方法是使用菜单命令 Audit->Electrical Cset。可以在.dcf 文件中 查看约束和网络。 8.4 支持完全的拓扑提取 在本节可以在 SigXplorer 查看有效的模型和校验并创建约束,并在约束管理器中应用和校 验约束。 在约束管理器中,选择 net 或者 Xnet。右键点击网络在弹出的菜单选择 SigXplorer,启动 SigXplorer。注意:如果一个分立元件没有指定一个有效的信号模型,则不会提取一个 Xnet。 在 SigXplorer 界面,选择菜单命令 Set->Constraints,启动 Set Topology Constraints 来设置 拓扑的约束,甚至可以设置未打包的元件的约束。请见下图:

2021-06-02

派生编辑器的启动和界面-煤矿井下搜救探测机器人结构设计

18.2 派生编辑器的启动和界面 下图是使用派生编辑器的 Front-to-back 流程: 涉及的具体工具和输入、输出文件见下图:

2021-06-02

同期比计算-美国2019:国家人工智能战略(中英双语)-2019.6-101页(8)

2.4 绑定数据列 绑定数据列 按照下列表格将数据集的字段拖入对应单元格内,并作相应的设置。 单元格 内容 基本属性设置 A2 ds1.定购年份 从上到下从上到下从上到下从上到下扩展,居中,其余默认 B2 ds1.订购月份 从上到下从上到下从上到下从上到下扩展,居中,其余默认 C2 ds1.订购金额 数据类型:汇总汇总汇总汇总-求和求和求和求和,居中,其余默认 2.5 同期比计算 在 D2 中填入:’ =if(&D2==1 && &A2==1,,C2/C2[B2:-1]) ’ ’ if(&D2==1 && &A2==1,,C2/C2[B2:-1]) ’:如果本记录为所在年份的第一个记录则为空,否则 等于这个月的金额除以上个月的金额。层次坐标 3.保存预览保存预览保存预览保存预览 保存为 %FineReport_HOME%/WebReport/WEB-INF/reportlets/com/doc/4.4.cpt 启动服务器,在浏览器中输入以下地址进行浏览: http://localhost:8079/WebReport/ReportServer?reportlet=/com/doc/4.4.cpt 更多详情:http://www.finereport.com

2021-06-02

感兴趣区文件管理-tc itk二次开发

(6) 感兴趣区文件管理 ROI Tool对话框中的 File菜单允许使用一个 ENVI ROI文件(默认扩展名为.roi)来保存和恢复感兴趣 区信息,以及把感兴趣区导出到 ENVI矢量文件(.evf)。 • 保存 ROIs到文件 要将目前在内存中的感兴趣区保存到文件: 从下列选项中选择: 在 ROI Tools对话框中,选择 File >Save ROIs。在显示窗口菜单栏中,选择 Tools >Region of Interest > Save ROIs to File。在 ENVI主菜单中,选择 Basic Tools >Region of Interest > Save ROIs to File。 当出现 Save ROIs to File对话框时,用鼠标左键在可滚动列表中点击所需要的感兴趣区名。 注意:只有在与当前显示具有相同尺寸的图像中定义的感兴趣区,才会显示在感兴趣区列表中。其它尺寸 的感兴趣区将保留在内存中。 键入或选择一个输出文件名(默认扩展名为.roi)。点击“OK”来保存感兴趣区文件。 • 恢复保存的感兴趣区 要恢复所有以前保存的感兴趣区,从下列选项中选择: 在 ROI Tools对话框中,选择 File >Restore ROIs。在显示窗口菜单栏中,选择 Tools >Region of Interest > Restore Saved ROI File。在 ENVI主菜单中,选择 Basic Tools >Region of Interest > Restore Saved ROI File。 当出现文件选择对话框时,选择一个感兴趣区文件。感兴趣区将被加载到每一个与定义该感兴趣区的 图像尺寸相同图像的显示组和 ROI Tool对话框中。 • 恢复多个感兴趣区 当恢复保存的感兴趣区时,可以在“Enter ROIs Filenames”对话框中选择多个感兴趣区恢复。 从下列选项中选择: 在 ROI Tools对话框中,选择 File >Restore ROIs。在显示窗口菜单栏中,选择 Tools >Region of Interest > Restore Saved ROI File。在 ENVI主菜单中,选择 Basic Tools >Region of Interest > Restore Saved ROI File。 当出现文件选择对话框时,按照下列选项选择多个感兴趣区。 要选择一组连续列出的文件,点击该组的第一个文件,点击并按住“shift”键,然后点击该组的最后 一个文件。或者,点击鼠标左键并拖放越过该组的所有文件,文件突出显示时说明它们被选中了。要选择 多个非连续列出的文件,按住键盘上“Ctrl”键的同时,点击每个所需要的文件。 被选择的感兴趣区将被加载到每一个与定义该感兴趣区的图像尺寸相同图像的显示组和 ROI Tool 对 话框中。

2021-06-02

声明编辑器-tomcat_web安全基线配置要求

5.2声明编辑器 5.2.1在声明编辑器中编程 声明编辑器用来声明POU变量和全局变量、声明数据类型,它能使用通常的窗口功能, 如果安装相应的驱动程序还能使用智能鼠标的功能。在改写模式下,“OV”在状态栏上显示 为黑色,通过<Ins>键可以在插入和改写模式之间切换。句式颜色支持变量的声明。在内容 菜单(鼠标右键或<Ctrl>+<F10>)中有 重要的命令。 提示:是否有可能利用语法影响一个变量特性,与汇编及预编译进程有关(见5.2.3 ) 。 Declaration Part(声明部分)只有在这个POU中的所有将要使用的变量才在POU的声明部 分中声明,这些变量包括:输入变量、输出变量、输入/输出变量、本地变量、添加的变量 和常量。声明格式是基于IEC61131-3标准。关于使用模板创建全局变量、数据类型、功能、 功能模块或程序类型的对象的可能性,查看4.3章节“File' New from template”。下面是在 Codesys 编辑器中正确声明变量的例子: - 5-2 -

2021-06-02

UPnP服务器-数据库基础知识

5.5 UPnP服务器 设置 UPnP 接口 语法: upnp set exif <exif> inif<inif> 参数说明: exif 设置 UPnP 服务的外部接口 inif 设置 UPnP 服务的内部接口 注意事项: 外部接口和内部接口不能是同一个接口; 合法的接口为以下设备: 以太网物理设备或 VLAN 设备或网桥设备或别名设备 设备已经启用 设备具有非空 IP 地址且地址不为 0.0.0.0 示例:

2021-06-02

深度过滤-数据库基础知识

6.6 深度过滤 6.6.1 URL组 添加 URL 组: 语法: dcf add urlgrp name <name> [ comment <comment> ] 参数说明: Name 指定欲添加的 URL 组的名字 Comment URL 组的注释 注意事项: 无 示例: ac>dcf add urlgrp name ug1 comment dangerous 修改 URL 组: 语法: dcf set urlgrp name <name> { comment <comment> | { add keyword <keyword>+ } | { del { all | keyword < keyword >+ } } } 参数说明: Name 指定欲修改的 URL 组的名字 Comment URL 组的注释 注意事项: 无 示例: ac>dcf set urlgrp name ug1 add keyword sina

2021-06-02

设置报表填报属性-美国2019:国家人工智能战略(中英双语)-2019.6-101页(8)

2.6 单元格的表单属性设置 对 B3,D3,F3,B4,F4,B5,D5,F5,A8,B8,C8,D8,E8,F8 单元格设置表单属性,其中 D3,F3 为日期型, C8,D8,E8 均为数字型,并且允许小数,其余均为文本类型。 设置完后如图 表单属性设置 2.7 设置报表填报属性 打开报表报表报表报表|报表填报属性报表填报属性报表填报属性报表填报属性对话框,如图所示

2021-06-02

DB2 9安全管理详解

本书《DB2 9安全管理详解》由Rebecca Bond、Kevin Yeung-Kuen See等人撰写,旨在深入探讨IBM DB2 9的信息安全管理。书中首先介绍了DB2 9的监管环境,随后详细阐述了DB2安全的基础知识,包括身份识别和认证、授权和访问控制、审计和配置管理等核心内容。作者们结合DB2信息管理软件的实际应用,为读者提供了系统化的安全管理和维护策略。本书不仅适合数据库管理员和安全专家,也适用于那些希望深入理解DB2安全机制的开发者和学者。

2025-05-11

可视化入门:随机森林与决策树

本书《可视化入门:随机森林与决策树》旨在为初学者提供机器学习中随机森林算法的直观理解。作者Scott Hartshorn通过实例解释了随机森林的工作原理,并探讨了决策树这一随机森林的基础组成部分。书中不仅涵盖了随机森林的概念性工作原理,还提供了一些数学细节。尽管本书主要以编程语言中立的方式撰写,但书中也包含了一些使用Python 2.7版本的Scikit-learn模块的代码示例。本书还提供了一个决策树速查表作为读者的免费礼物,以便更好地理解决策树这一机器学习技术。书中包含了大量的图表、Excel表格和Python程序,以及用于说明随机森林工作原理的数据集。读者可以免费下载这些示例。

2025-04-12

急诊科阿片类药物筛查与监测数据分析对比

本研究旨在比较急诊科患者中使用阿片类药物止痛药物处方的滥用风险筛查工具(SOAPP-R)与处方药物监测计划(PDMP)数据的一致性。研究对象为考虑出院时带阿片类药物处方的患者,他们完成了SOAPP-R筛查,并获取了PDMP数据。研究发现,SOAPP-R筛查的高风险患者比例约为三分之一,而PDMP高风险标准的患者比例为15.9%。SOAPP-R的高阴性预测值表明,它可能是一个有用的急诊科患者筛查工具。

2025-03-03

iOS 8 Swift编程食谱解决方案

本书《iOS 8 Swift编程食谱》是为Swift编程语言全新改写的食谱集,旨在帮助开发者解决在为iOS设备开发应用时可能遇到的复杂问题。书中包含了数百个新的和修订过的食谱,涵盖了使用iOS 8 SDK的各个方面,包括与HealthKit和HomeKit的交互、图形的增强和动画化、数据的存储和保护、通知的发送和接收、文件和文件夹的管理等。每个食谱都提供了可以在GitHub上立即使用的示例代码。书中还介绍了如何使用CloudKit API存储云端信息、创建自定义键盘和扩展、利用UIKit Dynamics创建生动的用户界面、使用Keychain保护应用数据、开发具有位置感知和多任务感知的应用程序、使用iOS 8的音频和视频API、使用Event Kit UI管理日历和事件、利用加速计和陀螺仪以及实现手势识别器和从地址簿中检索和操作联系人和组等实用技巧。作者Vandad Nahavandipoor是国际媒体集团的iOS和OS X程序员,具有丰富的行业经验。

2025-03-19

快速制图模板-tc itk二次开发

(2) 快速制图打印 要打印快速制图: 在快速制图主图像窗口中,选择 File >Print。选择 Output QuickMap to Printer或 Standard Printing复选 框,前者会根据在快速制图开始时所输入的参数对输出地图进行正确缩放;后者在生成快速制图时不考虑 输入的页面尺寸和地图比例。 注意:如果在快速制图设置时选择了较大的页面尺寸,最好先使用“Standard Printing”选项测试一个小比 例的输出,然后再使用“Output QuickMap to Printer”选项打印这个较大的页面。 点击“OK”。 • 其他的快速制图输出选项 要将地图直接输出到图像或脚本文件,按照本章描述的方法在地图的主图像窗口中的 File菜单中选择 相应的选项。 (3) 快速制图模板 生成一幅快速制图后,可以将参数设置保存在一个模板文件中,该文件可以用于其他具有相同维数和 像元尺寸的经过地理坐标定位的图像。在 QuickMap Parameters对话框中,点击“Save Template”。 键入一个输出文件名(ENVI将自动添加扩展名 .qm),点击“OK”。

2021-06-02

链接与动态覆盖-tc itk二次开发

4.20 交互式分析工具 使用 Tools菜单可以启动 ENVI交互式分析功能。ENVI交互式分析功能一般应用于特定的显示图像或 根据用户需要启动。功能包括:图像显示链接、提取 Z剖面和波谱图、彩色制图和密度分割、绘制感兴趣 区、波谱像元编辑器、测量工具、计算 line of sight、创建二维散点图、创建注记、提取极化信号、3-D曲 面浏览。 图 4-38:Tools菜单中交互式分析工具 4.21 链接与动态覆盖 链接与动态覆盖功能允许对多幅图像某一部分同时进行叠加(或 flicker images),或在单独一个图像 窗口对多幅图像进行相同操作。

2021-06-02

CN波谱锐化-tc itk二次开发

(5) CN波谱锐化 CN Spectral Sharpening工具是彩色标准化锐化算法的延续,通常用于对3波段RGB图像进行pan锐 化。与HSV或Brovey锐化不同,CN波谱锐化可以在保持输入图像的原始数据类型和动态范围的基础上, 同时对任何数量的波段进行锐化。例如:CN波谱锐化可以使用多光谱图像对高光谱数据进行锐化。 CN波谱锐化的彩色标准化算法也被称为能量分离变换(Energy Subdivision Transform),它使用来自 锐化图像的高空间分辨率(和低波谱分辨率)波段对输入图像的低空间分辨率(但是高波谱分辨率)波段 进行增强。该功能仅对包含在锐化图像波段的波谱范围内的输入波段进行锐化,其他输入波段被直接输出, 不发生变换。锐化图像波段的波谱范围由波段中心波长和FWHM(full width-half maximum)值限定,这 两个参数都可以在锐化图像的ENVI头文件中获得。 根据锐化图像波段的波谱范围,可以将输入图像的波段划分为各个波谱单元。系统按照如下方法对相 应的波段单元同时进行处理。每个输入波段乘以锐化波段,然后再除以波段单位中的输入波段总数,从而 完成标准化: 详细介绍,请参阅下列参考文献: Vrabel, J., Doraiswamy, P., McMurtrey, J., and Stern, A (2002).“Demonstration of the Accuracy of Improved Resolution Hyperspectral Imagery”, SPIE Symposium Proceedings. Vrabel, J., Doraiswamy, P., and Stern, A. (2002). “Application of Hyperspectral Imagery Resolution Improvement for Site-Specific Farming”,ASPRS 2002 Conference Proceedings. ‧ 所需输入参数 ENVI头文件中的波谱信息。需要进行锐化的输入图像在头文件中必须包含波长信息,锐化图像则需 要包含波长和FWHM(full width-half maximum)值。之所以需要这些参数,是由于该功能仅对包含在高

2021-06-02

彩色变换-tc itk二次开发

(4) 将反向MNF变换应用到波谱分析 Apply Inverse MNF to Spectra工具可以将MNF波谱变换回原始数据空间。该变换使用来自一个数据文 件的正向MNF统计。使用一个对话框(类似于端元收集对话框)可以从图表窗口、波谱库、ASCII 文件、 感兴趣区和统计文件中收集将被变换的波谱。 选择Transforms > MNF Rotation > Apply Inverse MNF to Spectra。当出现Forward MNF Statistics Filename对话框时,选择所需的正向的MNF统计文件名。将出现Inverse MNF Convert Spectra对话框。使 用Import菜单选项将波谱输入到对话框中,或将波谱拖放到对话框顶部的黑色拖放小组件中(详细介绍, 请参阅第298页“拖放-下拉窗口的使用”、“输入端元波谱”和第301页的“端元Options下拉菜单”)。点 击“Apply”。 ‧ 变换后的波谱输出 可以打印变换后的波谱图,或将它们保存为ASCII 文件、波谱库、IDL变量、脚本文件或图像文件。 要输出波谱图,选择File >Save Plot As >MNF图表窗口的输出类型。要打印波谱图,选择File >Print。详 细介绍,请参阅第200页的“输出图表数据”。 7.6 彩色变换 使用Color Transforms工具可以将3-波段红、绿、蓝图像变换到一个特定的彩色空间,并且能从所选 彩色空间变换回RGB。两次变换之间,通过对比度拉伸,可以生成一个色彩增强的彩色合成图像。此外, 颜色亮度值波段或亮度波段可以被另一个波段(通常具有较高的空间分辨率)代替,生成一幅合成图像(将 一幅图像的色彩特征与另一幅图像的空间特征相结合)。 注意:这可以在HSV锐化中自动完成(参见第341页的“图像锐化”)。 ENVI支持的彩色空间包括“色度、饱和度、颜色亮度值(HSV)”,“色度、亮度、饱和度(HLS)” 和“USGS Munsell”。 Munsell 彩色系统被土壤科学家和地质学家用于描述土壤和岩石的颜色特征。这套彩色系统已经被美 国地质勘测部门作了修订,以描绘数字图像的颜色。USGS Munsell变换将RGB坐标变换成了色彩坐标(色 度、饱和度和颜色亮度值)。色度变化范围为0~360,这里0与360代表蓝,120代表绿,240代表红。饱 和度变化范围为0~208,值越高代表颜色越纯。颜色亮度值的变化范围大致为0~512,较高的值代表较亮 的颜色。详细介绍,请参阅以下参考文献: Kruse and Raines, A technique for enhancing digital color images by contrast stretching in Munsell color space, in Proceedings of the ERIM Third Thematic Conference, Environmental Research Institute of Michigan, Ann Arbor, MI, 1994: 755-760. 注意:彩色变换需要输入三个波段。这些波段应该被拉伸为字节数据,或从一个打开的彩色显示窗口中选 择。

2021-06-02

穗帽变换-tc itk二次开发

(2) 穗帽变换 使用Tassled Cap选项可以对Landsat MMS、Landsat TM或Landsat 7 ETM数据进行变换。对于Landsat MMS数据,穗帽变换对原始数据进行正交变换,把它们变换到一个四维空间中(包括土壤亮度指数SBI、 “绿度”植被指数GVI、“黄度”(yellow stuff index)指数YVI,以及与大气影响密切相关的non-such指 数NSI(主要为噪声))。对于Landsat TM数据,穗帽植被指数由三个因子组成——“亮度”、“绿度”与“第 三分量”(Third)。其中的亮度和绿度相当于MSS穗帽中的SBI和GVI,第三分量与土壤特征及湿度有关。 对于Landsat 7 ETM数据,穗帽变换生成6个输出波段,包括:亮度、绿度、湿度、第四分量(噪声)、第 五分量、第六分量。这种类型的变换更适用于反射数据的定标(而不是应用于原始数据图像)。 详细介绍,请参阅以下参考文献: Jensen, J. R., 1986. Introductory Digital Image Processing, Prentice-Hall, New Jersey, p.379. Crist, E.P. and R.C. Cicone, 1984 “Application of the Tasseled Cap Concept to Simulated Thematic Mapper Data,” Photogrammetric Engineering and Remote Sensing, Vol. 50, pp. 343-352. Kauth, R.J., P.F. Lambeck, W. Richardson, G.S. Thomas, and A.P. Pentland, 1979.“Feature Extraction Applied to Agricultural Crops as Seen by Landsat,” Proceedings,LACIE Symposium, Houston TX, NASA, pp. 705-721. Huang, C., B. Wylie, L. Yang, C. Homer, and G. Zylstra. "Derivation of a Tasseled Cap Transformation Based on Landsat 7 At-Satellite Reflectance". USGS EROS Data Center White Paper (http://landcover.usgs.gov/pdf/tasseled.pdf). 选择Transforms > Tassled Cap。当出现Tasseled Cap Transformation Input File对话框时,选择输入文件, 若需要,选取任意子集。点击“OK”,将出现Tasseled Cap Transform Parameters对话框。在“Input File Type” 按钮菜单中,选择“Landsat TM”、“Landsat MSS”或“Landsat 7 ETM”。选择输出到“File”或“Memory”。 点击“OK”。 在穗帽变换过程中,将出现一个进程显示窗口,变换完毕后,ENVI将把穗帽波段名导入到可用波段 列表中。

2021-06-02

数据元素和数据集-beyond feelings中文版

,简称 DICOM)是医学图像传输和通信的国际标准,它的主要 目的是规范不同厂家,不同医疗设备产生的医学图像之间的 互相传输,互相通信的问题。 随着标准的普及,现代医疗仪器 最终产生的医学图像的格式, 最终都符合 DICOM 标准的规 定,给图像的传输,接收和显示处理带来了极大的方便。 然而 由于操作系统平台的多样性, 最终在显示和处理 DICOM 医 学图像时,采用不同平台下的软件,即增加了成本,又带来麻 烦。 本文采用与操作系统平台无关的 Java 语言处理 DICOM 文件,进行图像像素值的提取和转化,然后进行显示和处理, 最后可以使用常见的图像格式进行存储。 2 DICOM 文件格式解析 2.1 数据元素和数据集 DICOM 标准的第 3 部分详细定义了与现实世界医疗活 动中对应的各种信息对象实体。 信息对象是由各种属性模块 构成的,而这些模块的基本构成单位是数据元素,数据元 素 的 结 构 如 图 1 所示。 一 个 数 据 元 素 是 由 数 据 元 素 标 签(tag) 唯 一 确 定 的 , 数 据 集 的 数 据 元素应该按照标签号的大小有序排列,并且每个数据元素最 多只能出现一次。数据元素 VR(Value Representation ,数据值 类型表述)描述了数据元素所代表的数据类型。 数据值长度 VL(Value Length)说 明 了 后 面 数 据 值 体 VR(Value Field) 实 际数据长度 。 根据传输语法的不同,数据元素一共有 3 种不 同的结构,2 种显式结构和 1 种隐式数据结构。当使用显式数 据结构时,数据元素的结构由 4 个连续的字段构成:数 据 元 素的 TAG、VR、VL 和值域。当数据元素采用隐式 VR 结构时, 其结构由 3 个连续的字段构成:TAG、VL 和值域。如果数据元 素的值由 VL 来确定时,大小等于值域的字节数,否则,一个 序列分割符项目被用来标记值域段的结束。 另外在通信时, 还有可能交换不包括在标准中的私有数据元素,私有数据元 素与标准数据元素有相同的结构。 但私有数据元素中采用的 标签的组号为奇数。 数据集是由逻辑上相关的数据元素组成的,按照标签号 的大小顺排列。 有的数据集可以嵌套,开成递归的结构,以表 示更复杂的数据结构。 此类数据元素的数据类型为 SQ , 数 据值域又包含数据元素,可以形成多层嵌套数据元结构。 SQ 数据元素通常用于编码多帧图像。 2.2 DICOM 文件的组织结构 DICOM 文件由文件头和数据集组成, 数据集位于 DI- COM 文件头之后。 2.2.1 文件头信息 文件头由 128 个预定义引导字节加 4 字节 DICOM 前缀 及元信息构成, 元信息表示已封装的数据集的标识信息,数 据集中的内容则与元信息所表述的 SOP 类一致。 四字节前缀 为特征字串 DICM,这 4 个字节没有标识及长度信息。 后面的 元信息由组号为 2 的数据元素构成。 2.2.2 数据集 在 DICOM 文件存储应用中, 每个文件都应包含描述唯 TAG VR VL VALCE 数据元素 可选的,取决于传输语法 图 1 数据元素结构图 医 院 数 字 化 HOSPITAL DIGITALIZATION 154

2021-06-02

编辑系统彩色表-tc itk二次开发

(1) 编辑系统图形颜色 通过点击 Preferences对话框 Display Defaults标签下的“Edit System Graphic Colors”按钮来编辑 ENVI 应用于图形的颜色。该颜色被存储到 ASCII文本文件 colors.txt中的菜单目录中,ENVI一直使用该文件, 除非有一个缺省的图形颜色文件被输入到 envi.cfg文件中。 提示:要在图形颜色文件中添加新的颜色,通过使用一个文本编辑器,把颜色添加到文件的结尾(参见附 录 B中的“ENVI Graphic Colors Files”)。 选择 File >Preferences来打开系统参数对话框,在对话框中,点击 Display Defaults标签,然后点击“Edit System Graphic Colors”按钮,出现 Edit Graphic Colors对话框。通过在“Graphic Colors:”列表中点击一 种颜色,来编辑它。 警告:不建议更改前 5 种颜色的任何一种(黑、白、红、绿、蓝),因为它们使用于 ENVI 系统中。更改图 形颜色可能会影响原先保存的图形覆盖图。 要更改颜色名,在“Color Name”文本框中输入名称。要更改颜色,从按钮菜单中选择一种颜色,使 用“Red”、“Green”和“Blue” 滑动条来调整它。要把所有的颜色重新设置为初始值,点击“Reset”。要 退出该功能,且不应用更改,点击“Cancel”。 选择“OK”来应用更改。当出现一个提示时,从下列选项中选择。要永久地应用颜色更改,选择“Yes”。 只更改当前 ENVI会话的颜色,选择“No”。 (2) 编辑系统彩色表 在参数设置对话框中,点击“Display Defaults”标签,在出现的对话框中点击“Edit System Color Tables” 按钮可以进行如下操作,包括:定义新的彩色表、将定义的彩色表保存到 ENVI当前彩色列表中、以及从 当前列表中删除颜色表。你可以选择在 RGB(红-绿-蓝)、HLS(色度-亮度-饱和度)、HSV(色度-饱和度- 值)彩色空间进行操作,并且使用用户自定义的内插方法定义新的彩色表。你可以从调色板上挑选特定的 颜色来定义彩色表,或者使用一个阶跃彩色斜面来填充彩色表。 提示:在编辑彩色表时,最好将你的显示器设置为 16-bit或更高的彩色模式(设置为 8-bit模式时,该功能 同样有效,但是颜色可能无法正确显示)。 要确定所有颜色都是可用的,关闭所有显示和图表窗口。选择 File >Preferences,开启 System Preferences 对话框。在 System Preferences对话框中,点击“Display Defaults”标签,在出现的对话框中点击“Edit System Color Tables”按钮,将出现 ENVI Color Table Editor对话框,当前的彩色表作为一个彩色梯度窄条出现在 对话框的右侧。在彩色条的左、右两侧将各出现一个白色的定位箭头。当前系统的颜色将显示在Color Palette Selection窗口中。

2021-06-02

缩放窗口-tc itk二次开发

(2) 缩放窗口 缩放窗口是一个小的图像显示窗口,它以用户自定义的缩放系数来显示图像的一部分。缩放窗口提供 无限制的缩放能力,例如放大或缩小以及 panning。 提示:你可以通过缩放窗口的快捷菜单来启动许多缩放窗口和主图像窗口的菜单功能。详细介绍请参阅第 114页的“显示窗口快捷菜单”。 • 显示菜单 使用缩放窗口显示的菜单条可以选择一些常用的交互式显示功能。当显示菜单中的某项功能被选中 时,该功能只能应用于活动层(参见第 114页的“显示窗口的菜单栏”)。 • 调整缩放窗口大小 要调整缩放窗口的大小,从下列选项中选择:通过按住一角并拖放到所需要的图像大小,动态地调整 缩放窗口大小。主图像窗口中相应的缩放窗口指示器方框自动地改变它的大小和形状,以与显示的缩放窗 口相匹配。在显示菜单中,选择 File > Preferences,在出现的 Display Preferences对话框中适当的文本框内 输入尺寸(参见第 117页的“更改窗口尺寸”)。使用 envi.cfg 配置文件中的参数设置,来改变系统默认的 缩放窗口大小(参见附录 A中的“Installing and Customizing ENVI”)。 • 缩放窗口的移动 使用键盘上的方向键可以使缩放窗口在主图像窗口中沿箭头方向逐像元移动。使用 Shift+方向键可以 使方框在主图像窗口沿箭头方向每次移动 5个像元。 • 显示缩放窗口滚动条 缩放窗口边框内的滚动条允许你移动所显示的图像。当你使用滚动条时,滚动窗口的图形框移动,以 显示你在整幅图像中的哪个部分。显示缩放窗口滚动条,有三种方法: 固定在缩放窗口显示滚动条 在 ENVI主菜单中,选择 File > Preferences。在 System Preferences窗口中,点击“Display Defaults”, 将出现关于 Display Defaults的默认参数设置对话框。点击“Zoom Scroll Bars”箭头切换按钮来选择“Yes”。 点击“OK”。在 System Preferences窗口,选择 File > Save Configuration。 注意:不存盘退出,选择 File > Cancel。 键入一个输出文件名,然后点击“OK”。 开启或关闭一个缩放窗口的滚动条 在缩放窗口单击右键,选择 Toggle >Display Scroll Bars或在主图像窗口中,选择 File >Preferences。将 出现 Display Preferences对话框。在对话框的缩放窗口部分,点击“Scroll Bars”箭头切换按钮,选择“Yes” 或“No”。点击“OK”。

2021-06-02

的“矢量属-tc itk二次开发

(2) 矢量窗口选项 矢量数据通常包含多个矢量层,例如,下图中显示的一个可用矢量层就包括城市、县、公路、州。矢 量窗口中的选项具有以下功能,包括:矢量的显示控制;增加新的矢量;导出矢量层坐标,用于图像到地 形图的配准;浏览、编辑和查询矢量属性(参见第四章的“矢量层的操作”以获得详细介绍)。 图 3-12:矢量窗口 (3) 矢量属性 矢量层可以有相应的属性。ENVI 能读取 Shape 文件属性,并可以与之交互。你可以使用指针选择矢 量窗口中的矢量来突出显示相应的属性,或选择一个属性来突出显示相应的矢量。你可以进行矢量属性查 询,使用简单的数学和逻辑运算来选择属性,以创建新的矢量层。ENVI 也允许你编辑现有属性或给矢量 添加新属性。点的属性名可以被绘制在矢量窗口中,点的符号大小与属性值有关(参见第四章的“矢量属

2021-06-02

复制数据组后的版面视图-电子计算机算法手册 algol-60_详细书签

图 5.31 复制数据组后的版面视图

2021-06-02

漏电流的测定-普中科技 hc6800 开发板原理图

(2) 漏电流的测定 实际测定漏电流时,请使用不易受高频漏电流影响的产品。此时的测定范围应设定为 50~60Hz。 要点 1. 电机容量过大,漏电流存在增大的倾向。 2. 由于驱动器内部的变频回路对晶体管进行高速开关,因此必定会发生高频漏电流。为尽可 能减小高频漏电流,请妥善实施接地。请勿将驱动器和电机分别单独接地(两点接地), 必须在驱动器一侧统一进行接地(单点接地)。 3. 包含高频的漏电流有时可能达到 100mA,但根据 IEC479-2标准,此程度对人体尚不够成 危险。

2021-06-02

本监控系统组网原则-kubernetes operators

2.5、记录设备 电子在实际应用中,某些设备的运行状况和仪表的显示除了需要实时 监看外还需要将图像记录下来留档。这个时候便需要诸如长时录像机,硬 盘录像机之类的图像记录装置。目前,已淘汰了磁带记录设备,取而代之 的是计算机硬盘记录设备。 监控系统设计原则 一、本监控系统组网原则 1、先进性 电子系统是在满足可靠性和实用性的前提下尽可能先进的系统,特别是 符合发展并且应有成熟的系统。整个系统在建成后的十年内保持先进,系 统所采用的设备与技术能适应以后发展,并能够方便地升级。将成为一个 先进、适应未来发展、可靠性高、保密性好、网络扩展简便、连接数据处 理能力强、系统运行操纵简便的安防系统。 2、可扩展性 监控设备采用模块化结构,系统能够在监控规模、监控对象、或监控要 求等发生变更时方便灵活的在硬件和软件上进行扩展,即不需要改变网络 的结构和主要的软硬件设备。系统具有一定的冗余量,能够适应不断增加 的业务需求,在系统加入新的监控点或监控区域时,只须建立前端监控系 统并建立和监控中心的连接即可,系统监控中心的软硬件无须做大的改变, 只需增加少量设备; 系统具备多级组网能力以便组建更大的监控网络。 3、开放性 系统遵循开放性原则,系统提供符合国际标准的软件、硬件、通信、 网络、操作系统和数据库管理系统等诸方面的接口与工具,使系统具备良 好的灵活性、兼容性、扩展性和可移植性。整个网络是一个开放系统,能 兼容不同厂商的产品,并能支持二次开发。 4、灵活性 系统组网方式灵活,系统功能配置灵活,能够充分利用现有视频监控 子系统网络资源。系统将其他子系统都融入其中,能满足不同监控单元的 业务需求,软件功能全面,配置方便。 5、可靠性 系统具备在规定的条件下和规定的时间内完成本系统的规定功能的能 力,具备系统长期和稳定工作的能力,采用高可靠性措施,这些措施利用 如下的技术降低系统故障概率和有关影响正常运行的随机性: 系统的使用不影响被监控设备的正常运行; 系统的局部故障不影响整个监控系统的正常工作。 系统主要设备存在结构和功能冗余,系统不存在瓶颈问题; 系统设备采用模块化结构,便于故障排除和替换;

2021-06-02

为经过地理坐标定位的图像选择像元-tc itk二次开发

(1) 为经过地理坐标定位的图像选择像元 在Line of Slight Calculator对话框中,选择Options >Map Coordinates。分别在“E”和“N”文本框中 输入相应的地图坐标。 要以经纬度的方式输入地图坐标,点击地图投影名旁的箭头切换按钮,在“Lat”和“Long”文本框

2021-06-02

输入数学表达式-tc itk二次开发

(1) 输入数学表达式 表9-1中列出了可以用于波谱运算表达式的函数类型及运算符。至于如何在波谱运算中应用自定义的 程序和函数,请参阅第422页的“在波谱运算中使用IDL程序和函数”。 在Spectral Math对话框中的“Enter an expression”文本框里,键入所需的包括变量名的数学表达式, 将用整个波谱或图像对该表达式进行赋值。 变量名必须以字母“s”或“S”开头,后面跟着5个以内的数字字符。例如,如果想计算六个波谱的 平均值,输入文本框中的数学表达式应为:(s1+s2+s3+s4+s5+s6)/6,这里“s1”是第一个波谱,“s2”是第 二个波谱,“s3”为第三个波谱,以此类推。也可以从磁盘中打开以前保存过的表达式(参见“使用以前保 存的表达式”)。 输入一个正确的表达式后,点击“OK”继续。将出现Variable/Spectra Pairings对话框(参见第421页 的“将波谱赋值给变量”)。 ‧ 使用以前保存的表达式 可以重新使用、存储或打开以前使用过的数学表达式。在 Spectral Math对话框中的“Previous Expression”列表里,点击所需的表达式,将它输入到“Enter an expression”文本框中。输入完毕后,点击 “OK”,按照第421页“将波谱赋值给变量”中所描述的程序执行,可以将表达式应用于新的波谱。 ‧ 清除表达式 要清除“Previous Expression”列表中所有的表达式,点击“Clear”。 ‧ 从列表中删除表达式 要从列表中删除一个单独的表达式,点击它,然后点击“Delete”按钮。 ‧ 保存表达式 在Spectral Math对话框中,点击“Save”按钮。键入输出文件名,点击“OK”。输出文件名的扩展名 应是.exp (波段运算与波谱运算都可以使用这些扩展名为 .exp的文件)。 ‧ 恢复保存的表达式 要恢复以前保存的表达式,点击“Restore”,选择所需的文件名。 ‧ 在列表中添加表达式 要在“Previous Band/Spectral Math Expression”列表中添加一个单独的表达式,在“Enter an expression” 文本框中输入它,然后点击“Add to List”按钮。

2021-06-02

ENVI文件选择-tc itk二次开发

1.9 ENVI基础 该节讲述了标准 ENVI文件的打开过程和相关选项以及在许多 ENVI窗口和对话框都经常用到的其他 标准的 ENVI功能。 (1) ENVI文件选择 在将任何 ENVI功能应用到一个特定数据集之前,用户必须首先选择包含该数据的文件。为了保证一 致性,几乎每个 ENVI图像处理功能都使用一个标准的输入文件选择对话框。该对话框允许用户选择一个 输入文件或一个波段,选择一个空间或波谱的子集,并且在某种情况下提供输入数据的掩膜。 文件选择对话框的标题栏内显示当前的功能和/或输入文件类型。例如下图中,标题栏中显示“Calculate Statistics Input File”,因为此时进行的功能是计算统计量。 图 1-5:文件选择对话框 • 选择用于处理的波段或文件 使用“Select By”箭头切换按钮来选择输入“File”或“Band”。 在标签为“Select Input File”或“Select Input Band”的列表中,点击所需要的文件或波段名。如果你 选择通过波段输入,数据集将按默认的展开格式显示。展开数据集的名称按如下格式显示出来: - filename.ext

2021-06-02

PCB布局注意事项-市政道路智慧(路灯)灯杆系统解决方案

7.5 PCB布局注意事项 PCB 布局时,需要把 DDR 颗粒尽量靠近 DDR 控制器放置。每个电源管脚需要放置一个滤波电容,整 个电源上需要有 10uF 以上大电容放在电源入口的位置上。电源最好使用独立的层铺到管脚上去。串联匹 配的电阻最好放在源端,如果是双向信号,那么要统一放在同一端。如果是一驱多的 DDR 匹配结构,VTT 上拉电阻需要放在最远端,注意芯片的排布需要平衡。下面介绍几种 DDR 的拓扑结构,首先,一驱二的情 况下分为树状结构,菊花链和 Fly-by 结构,Fly-by 是一种 STUB 很小的菊花链结构。DDR-Ⅱ和 DDR-Ⅲ走 菊花链结构都是比较适合的。走树状结构可以把两片芯片贴在 PCB 的正反两面,对贴减小分叉的长度。一 驱多的 DDR 拓扑结构比较复杂,需要仔细进行仿真。 两片 SDRAM 的拓扑结构

2021-06-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除