内六角尺寸规格_常见螺丝和规格

0f753b53e7cf1f06d8dbb912fda6de43.png

常见螺丝:

a. Slotted: 一字( Minus )

螺丝种类2 (5张)

b. Phillips: 十字( Plus )

c. Phil-Slot: 一字/十字

d. Hex Scoket: 内六角

e. One Way: 单向(只可锁入,不可退出)

A-4: Head Code/ 头部外型.

a. Flat: 平头(锁入后,顶部与工作件齐平)

b. Oval: 色拉头

c. Round: 圆头

d. Pan: 圆扁头

e. Truss: 大圆扁头

f. Hex : 六角头.

A-5: Finish Code/ 外观处理.

螺丝种类1 (5张)

公制自攻螺丝:于品名后方直接标示Tapping Type.

Ex: Φ3 x 6 –PPB, Tapping Type:

Φ3 自攻螺丝, 6mm 长, 十字, 圆扁头, 镀黑.

螺纹规格为ST2.9 -ST6.3 的六角凸缘自钻自攻螺钉

一般常用规格如下:

a. Z: Zine-Plated: 镀锌

b. Ni: Ni-Plated: 镀镍

c. Tin-Plated: 镀锡

d. Zine Plated / Green Iridite: 镀锌绿膜处理.

e. Radiant Plated: 镀五彩

f. Passivate: 抗氧化处理.

g. Alodial Finish: 无外观处理

公制自攻螺丝钉:于品名后方直接标示Tapping Type.

Ex: Φ3 x 6 –PPB, Tapping Type:

Φ3 自攻螺丝钉, 6mm 长, 十字, 圆扁头, 镀黑.

一般以产品别或标示, 再判断为Sheet Metal 或塑料部品使用.

B: 美规螺丝钉.

a.一般以番号标示, 如#2-56, #4-40, #6-32, #8-32, #10-24…etc.

b.或以英制外径表示,

如0.086-56, 0.112-40 , 0.138-32 , 0.164-32 , 0.190-24…etc.

Ex: 632 – 8 – P P B:

Finish Code: 外观处理规格

Head Code: 头部外型

Drive Code: 头部剖沟,特征型号

Length Code: 螺丝钉长度

Thread Code: 螺丝钉型号

B-1: Thread Code: 螺丝钉型号

一般常用规格如下:

a. #2-56 (0.086-56): 2 番56 牙

b #4-40 (0.112-40) : 4 番40 牙

c. #6-32 (0.138-32) : 6 番32 牙

d. #8-32 (0.164-32) : 8 番32 牙

e. #10-24 (0.190-24): 10 番24 牙

***牙为每吋之牙数.***

B-2: Length Code: 螺丝钉长度

美规螺丝钉长度须经换算, 才是公制mm 尺寸.

换算公式: (Length Code / 32) x 25.40 = 公制长度mm

B-3, B-4,B-5 : 标示方式与公制相同.

C: 英制螺丝钉:

C-1: Thread Code:

标示皆将分母为8, 再直接称分子之番号.

Ex: 1/8 x 0.50 –PPB: 1 分牙螺丝钉x 0.50” 长, PPB

Ex: 5/16 x 0.50 –PPB = 2.5/8 x 0.50-PPB : 2 分半牙螺丝钉x 0.50” 长, PPB

Ex: 5/32 x 0.50 –PPB =1.25/8 x 0.50-PPB: 1 分2 厘半螺丝钉x 0.50” 长, PPB

Ex: 1/4 x 0.50-PPB= 2/8 x 0.50-PPB: 2分牙螺丝钉x 0.50” 长, PPB

注: 有时会标示粗牙或细牙.

UNF: 细牙:电子业较常用.

UNC:粗牙: 重机械结构较常用.

Ex: 3/8 x 0.50 ,UNF –PPB: 3 分细牙螺丝钉x 0.50” 长, PPB.

C-2: Length Code:

为英吋标示, 须乘以25.40 换算为mm

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别后处理,每个环节都采用了先进的算法技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值