本文提出了一种对于背景和光照鲁棒的特征表示方法,它基于生物启发特征(BIF)和协方差描述符,并且能广泛的应用于面部识别和Re-ID的任务中,得到了较高的准确率。
1.Introduction
在人脸识别和Re-ID任务中,需要在光照、姿态、视角、背景、部分遮挡和分辨率方面发生变化的情况下正确识别query和gallery中的图片。在这篇文章中,提出了一种新的基于生物启发特征和协方差描述符的图像表示方法,能够对背景和光照的变化鲁棒。
2.Framwork
对于一个彩色图像,首先将其分为三个通道,HSV(H 色调,S饱和度, V明度)相对于RGB空间,HSV空间能够直观的表示色彩的敏感,色调以及饱和程度,方便进行颜色对比。
随后使用16个尺度不同的Gabor滤波器对三通道分别进行处理,Gabor滤波器可以在频域不同尺度和不同方向上提取相关特征,与人眼的生物作用相仿。
将16个滤波之后的图像进行两两相邻配对,得到8个band,每个band进行一次最大池化,得到BIF(生物启发特征)。再将band图像进行分块,处理后得到协方差描述符。再将两两相邻的band进行广义特征值的求取。将它们拼接起来组成Bi-Cov特征
3.Covariance Descriptor based on Bio-inspired Features
3.1 BIF
首先使用Gabor滤波器对图像进行处理
其中滤波函数如下:
μ和v分别是尺度和方向参数,本文中分别取16和8
实际应用中,为了使计算简便有效,一般采用如上的形式
随后在两个连续的尺度上做最大池化
最大池操作增加了对小范围变化的宽容度,这种变化经常发生在人和人脸图像中,因为图像只是大致对齐的。
3.2 BiCov Descriptor
首先将每个band的图像切割成小块的重叠矩形,
每个像素,计算一个7维特征向量来捕获强度、纹理和形状统计信息
其中Bi(x,y)是原始像素强度
随后计算图像每个区域的协方差描述符:
fi-是fi(x;y)在r区域内的均值,n是r区域的大小
最后对相邻两个band的对应区域计算广义特征值
最后将广义特征值连接起来表示图像
这样我们就可以通过计算两个图像特征表示的欧氏距离来得到两者的距离了
对于彩色图像,我们是将三个通道分别处理后,在图像表示的步骤将其连接起来。
为了更好地表示图像特征,这里添加了另外两种图像表示
(1)Weighted Color Histogram (wHSV)权重颜色直方图,(2)MSCR
4.Result
面部识别
Re-ID
无约束条件下的面部识别
5.Conclusion
1.该方法通过对图片的特征表示,更加有效的提升了识别任务中的准确率
2.广义特征值的表示有何意义?
3.只适用于人物形态变换较少的场景