牛顿拉夫逊PQ节点法c语言编程,牛顿拉夫逊介绍(原理、计算方法、程序)..doc

牛顿-拉夫逊法是电力系统潮流计算的有效方法,通过线性化非线性方程组求解。其优点包括快速收敛性和对大规模网络的适应性。在初始值选择恰当的情况下,通常经过几次迭代即可得到精确解。该文介绍了牛顿-拉夫逊法的基本原理、计算过程以及在C语言中的编程应用。
摘要由CSDN通过智能技术生成

4

3 牛顿-拉夫逊法概述

3.1 牛顿-拉夫逊法基本原理

电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。潮流计算的目标是求取电力系统在给定运行状态的计算。即节点电压和功率分布,用以检查系统各元件是否过负荷。各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。实际电力系统的潮流技术那主要采用牛顿-拉夫逊法。

牛顿--拉夫逊法(简称牛顿法)在数学上是求解非线性代数方程式的有效方法。其要点是把非线性方程式的求解过程变成反复地对相应的线性方程式进行求解的过程。即通常所称的逐次线性化过程。

对于非线性代数方程组:

即 (3-1)

在待求量x的某一个初始估计值附近,将上式展开成泰勒级数并略去二阶及以上的高阶项,得到如下的经线性化的方程组:

(3-2)

上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量

(3-3)

将和相加,得到变量的第一次改进值。接着就从出发,重复上述计算过程。因此从一定的初值出发,应用牛顿法求解的迭代格式为:

(3-4)

(3-5)

上两式中:是函数对于变量x的一阶偏导数矩阵,即雅可比矩阵J;k为迭代次数。

有上式可见,牛顿法的核心便是反复形式并求解修正方程式。牛顿法当初始估计值和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。

牛顿潮流算法突出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值