“数方格”是笨方法吗?
深圳市宝安区西乡街道教学研究中心张维国
在学习与探索平行四边形、三角形等基本图形的面积计算之前,教材安排了“比较图形的面积”活动(如右图)。教材的本意是以方格纸为载体,让学生自主地比较各种不同形状图形面积的大小,体验到比较两个图形面积的大小可以有多种方法。同时,也让学生知道,确定一个图形面积的大小,不仅是根据图形的形状,更重要的是根据图形所占格子的多少来确定的。这样安排,也为学生自主探索基本图形面积计算的方法打下了基础。
在实际教学中,老师们往往在知识点上下功夫,着力总结出比较面积的方法,而对于每种方法的内在价值以及方法之间的联系挖掘不够。特别是,容易忽视教材借助方格纸,让学生通过用“数方格”的方法来比较图形大小的方法。下面这位教师的处理就很具有代表性:
【片段一】提出问题,尝试解答
师:(出示主题图)这节课我们来学习比较图形的面积。比较图形面积的方法有很多。比如我用个笨方法——数方格。我们一起来数一数①号图形,它的面积是几个小方格。(师生一起数,得到4.5)
师:我们再看③号图形,它有几个小方格。(一起数,也得到4.5)我们用这个笨方法,可以得出①号图形和③号图形的面积是相等的。
师:我们还可以用什么办法知道①号和③号是相等的呢?
生2:可以把①号图形向右平移,正好可以和③号重叠在一起。
师:用平移的方法可以得出两个图形面积是相等的。这种方法更简单,不用费劲去数了。我们还可以用什么办法找到图形之间的关系呢?
生3:我们还可以用旋转的办法。
师:真不错!请同学们在小组内一起找一找这些图形的面积有什么关系?把你们找到的记下来。
(生小组内交流想法,组长作记录)
[点评] 这位教师担心学生不能独立找到比较这些图形面积的几种办法,在学生探索之前,先进行讲解,用数方格和平移两种方法比较出①号和③号图形的面积相等。教师在说明“数方格”的方法时,还特意强调“用一个笨方法”。由于①号和③号图形是特例,通过平移①号就能得到③号,易使学生以为在比较面积大小时,用平移的方法更简洁,而用数方格的方法去数,实在太“笨”了。因此,在小组合作学习时间,学生都在想方设法寻找平移、旋转或拼切的办法比较这些图形的面积。
【片段二】汇报交流,提升认识
师:这些图形之间有什么关系呢?谁来说一说?
生1:把⑨号向右平移到⑩号那里,它们合起来和12号一样。
生2:把①号顺时针旋转90度,再向右平移9格,和③号合起来,再逆时针旋转90度,就和④号一样了。
生3:我用平移的办法,可以把⑤号和⑥号合起来,正好等于⑧号的面积。
生4:我把11号三角出来的那部分切下来,补到空的地方,正好和12号图形一样。
生5:我把⑥号平移到⑧号那里,他们两个合起来与13号一样。
师:我们合起来看一下。13号的这个底是7格,而⑥号和⑧号合到一起的这个底是8个格。一样吗?(不一样)看来,这样平移不行。
师:我们一起来看一下,在比较这些图形的面积、寻找它们关系的时候,我们用了哪些方法?(师生一起总结出数方格、平移、旋转、组合、割补这五种方法)
[点评]对于“数方格”,学生并不陌生。他们在三年级的时候就已经学习过用这种办法求面积。但是,在这节课上,学生却没有采用“数”的办法。他们都极力寻找用平移、旋转、组合、割补这些办法来说明图形之间的关系。这样,学生虽易发现形状相近(同)、位置或方向不同的图形的面积关系,却忽视了形状不同的图形面积的比较。比如:全班竟无1人发现图中11号、12号和13号图形虽然形状不同,但是它们的面积却是相等的。而如果通过“数方格”活动,使学生发现“图形的形状不同,面积却可能相等”,就会为接下来学习基本图形面积的计算埋下探索的种子,把学生的思考由表面引入本质。
课后慎思
那么,数方格求面积到底是不是“笨”方法?这一方法到底具有什么价值?数方格与平移、旋转、组合等方法之间有什么不同与联系?为什么在探索平行四边形、三角形和梯形等图形面积公式时,教材都要提到数方格的方法呢?
一、从学生已有的基础思考:数方格是重要的数学活动经验
长方形的面积等于“长×宽”,大家都能倒背如流。如果接着追问:“为什么长方形的面积等于长×宽呢?”很多人就答不上来了。要理清这个问题,就要回顾学生探求长方形面积公式的过程。在教学中,学生开始面对长
5cm、宽3cm的长方形,力求用1平方厘米的小方块拼出这个长方形,或者将长方形分成若干个1平方厘米的小方格,然后数方格的个数,用直接计量的方法求面积。
当学生意识到:每行有5个小方格(或方块),共有3行,求方格或方块总数的最简便的方法是用乘法;只要知道每行有几个方格,共有几行就可以算出来了,不一定要将长方形分成厘米方格)(或用方块来拼),只需用相应的长度单位去量一量长方形的长和宽就行了。这样,学生就“自然地”由长方形面积的直接计量过渡到间接计量。由此可见,数方格(或用方块来拼、将长方形分成厘米方格)这一操作活动推动着学生的思维由直观操作水平向形象抽象水平过渡,为学生到达更高层次的初步本质抽象水平的认识架设了一座桥梁。
二、从思想方法的角度思考:数方格求面积是基础中的基础
追本溯源,数方格的方法与公式法求面积的联系在哪里?教材为什么在每个基本图形面积公式的教学之前,都要安排用数方格的办法求这种图形的面积?
要明确这个问题,就要进一步了解这两种基本的测量方法:直接计量法与间接计量法。所谓直接计量法,就是把要计量的量直接同计量单位进行比较而得出量数的方法。通过数方格求面积,就是用直接计量法求面积。直接计量法就是将被测量的量和计量单位直接比较(如用卷尺测量两棵树之间的距离),得出被测量的量是计量单位的多少倍,从而用量数和计量单位来表示被测量的量的大小。用直接计量法求面积的理论依据是关于面积概念的两个公理:“全等形等积”和“面积的可加性”。间接计量法是指先计量其他有关的量,然后通过计算,得到所需要的计量结果。例如计量长方形的面积,先量长方形的长和宽,然后用公式计算长方形的面积,这就是面积的间接计量法。
从小学数学教材编排体系看,长方形的面积求法是推导其他基本图形面积公式的重要基础,而长方形的面积公式是通过数方格的方法过渡得到的。因此,数方格求面积的方法显然是基础中的基础。
间接计量法和面积公式的运用,大大地简化了求面积的操作。但直接计量法在求某些不规则图形的面积时,仍有其不可替代的作用。因为有时用直接测量法求图形的面积是做不到的。比如用面积单位去量圆的面积是得不到准确的值的。我们只能用对应的长度单位去度量圆的直径或半径,再按一定的公式计算圆的面积。
即使到高中阶段,求曲面梯形等不规则图形面积的时候,也仍然要运用数方格的方法,探求规律,推导出面积的计算公式。因此,每当求复杂的面积问题难以求解时,人们总是回到原点,从数方格这一最简单的方法起步,用直接测量法不断接近所求的目标,发现其中的规律,最终过渡到间接测量,用公式求面积。因此,数方格求面积的方法看似简单,实则在简单中蕴含着复杂面积问题的解决策略,具有重要的价值。
另外,图形的分割、组合、平移、旋转等方法是有前提的,那就是在形状上必须是相同或部分相同。而比较图形面积不仅要看图形的形状,更关键的是要看图形所占格子数量的多少。形状相同,格子数一定相同;形状不同,格子数也有可能相同。从这个意义上说,“数方格”在众多方法中,虽显笨拙,却是深入到面积比较本质的通用方法,不能轻视。作为教师,更不能凭自己成人的眼光,轻易下判断,对学生造成误导。我们应当给学生更大的空间,让他们在尝试和经历中,不断丰富数学活动经验。在此基础上的学习,才可以称得上鲜活的、有意义的学习。
备注:本文发表于2012年《小学教学》数学版第九期