说明
正整数n若是其平方数的尾部,则称n为同构数。例如,6是其平方数36的尾部,76是其平方数5776的尾部,6与76都是同构数。下面的程序求解不超过10000的所有同构数。
已知一位的同构数有三个:1,5,6,因此二位数的同构数的各位数字只可能是1,5,6,这三个数字。依次类推,更高位数同构数的个位数字也只可能是1,5,6,这三个数字。
下面程序的处理思路是:对不超过10000的每一个整数 a,判断其个位数字,若为1,5,6,则将 a 转换为字符串 as ,然后对 a 进行平方运算,并截取其尾部与 as 长度相等的若干字符形成字符串后与 as 比较,根据它们相等与否来断定 a 是否为同构数。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int myitoa(int, char *); //整数转换为字符串
//*right 取得指定字符串尾部长度为length的子串,返回所得子串的首字符指针
char *right(char *,int length);
int main(){
int a,t;
int len;
char as[10] ,rs[20];
printf("[1,10000]内的同构数:\n");
for(a=1;a<=10000;a++){
t = a % 10;//取整数a的个位数字
if(t!=1&&t!=5&&t!=6) continue;
len = myitoa(a,as); //数a转换为字符串,存入as
myitoa(a*a,rs); //数a的平方转换为字符串,存入rs
//比较字符串as与rs末尾长度为len的子串是否相等
if(strcmp(as,right(rs,len))==0){//若相同则是同构数并输出
printf("%s的平方为%s\n",as,rs);
}
}
return 0;
}
int myitoa(int num,char *s){
int i,n=0;
char ch;
//从个位数开始,取num的每一位数字转换位字符后放入s[]
while(num){
s[n++] = num % 10 + '0';
num = num / 10;
}
s[n] = '\0';
for(i=0; i<n/2 ;i++){ //将s中的字符串逆置
ch = s[i];
s[i]=s[n-i-1];
s[n-i-1] = ch;
}
return n;
}
//取字符串ms尾部长度位length的子串,返回所得子串的首字符指针
char *right(char *ms,int length){
int i;
for( ; *ms ;ms++); //使ms到达原字符串的尾部
for(i=0;i<length;i++,ms--); //使ms指向所得子串的首部字符
return ms;
}