基于区间预测的调度方法

《基于区间预测的光伏发电与蓄电池优化调度方法》

为了应对县级市光伏发电与用电需求之间的最优调度问题,提出一种面向蓄电池和光伏发电机的区间预测调度优化方法。该方法分别对发电功率调度、充电/放电功率调度和荷电状态调度进行决策从而获得最优调度的精确范围。

建立最优SOC调度随用电网络需求变化的雅可比矩阵,接着证明雅可比矩阵的一部分属于M矩阵,并且是对角占优矩阵。利用这一事实,可以显示出最优SOC调度的单调性,从而进一步推导出所有电力调度范围。其中,最优发电功率和C/D功率随净需求变化呈单调变化,由此可获得最优发电功率调度和C/D功率调度的准确范围,并为蓄电池在每个时间区间保持足够的容量提供指导。

看不懂......

《计及区间预测信息的含风电电力系统有功多时间尺度协调调度优化方法》

将点预测信息纳入含风电的电力系统调度将不可避免出现“过调度”和“欠调度”。

本文提出计及区间预测信息的含风电电力系统有功多时间尺度协调调度优化方法。首先,利用电模型及其预测误差分布构建风电功率区间预测模型。其次,建立具有区间预测信息的风电场有功功率动态分群策略。再次构建了风电集群和机组与非AGC机组等多时间尺度协调的调度策略,通过滚动优化和反馈校正环节协调日前-日内以及实时调度。

在策略中既保留点预测信息又考虑误差分布特性(包含误差大小、分布形态),这对于保障风电消纳既电网安全经济运行具有重要意义。

日前调度:

主要依据日前风电功率预测和负荷预测信息,制定未来24小时常规机组的开机/停机和小时级别输出功率调度计划。本质数学问题是一个多场景和高纬度的混合整数规划问题

日内滚动:

依据超短期风电功率预测信息和提前制定的常规机组输出功率情况,安排未来4小时内各个常规机组输出功率,并每隔15分钟滚动刷新,本质数学问题是一个多场景和高维度的非线性规划问题。

实时调度:

考虑功率缺额以及备用容量情况,修正常规机组输出功率计划,本质数学问题是一个单时段小规模的非线性规划问题。

首先,利用风电功率预测模型获得点预测信息,并基于预测误差概率分布构成有功功率预测区间,该区间信息包含最大执行水平下(99%)和最小置信区间(60%)有功功率预测信息

其次,电力调度控制中心获得预测的发电和用电信息后,计算风电集群和AGC与非AGC机组的有功功率,以指令的形式下发

再次,在风电集群允许输出功率区间范围内,制定风电场动态分群策略,划分为若干个群,以此达到规避风电场之间调度指令分配不均问题

点预测采用LSTM模型

基于点预测结果,构造不同置信水平下的风电功率预测区间值

基于区间预测信息的风电集群划分公式:

t为风电功率时间,时间间隔为15min,γ为风电功率趋势判断因子,γ的上限为4下限为-4,所以为上限的时候,表示风电功率在周期内持续上升,为上坡群;为下限的时候,表示风电功率在周期内持续下降,为下坡群;在(-4,4)之间,跳跃式来回摇摆,需要根据预测周期内风电功率波动阈值\eta区分来回摇摆程度。

最后,将因预测误差而造成的AGC、非AGC和风电场/集群造成的调度偏差信息反馈给电力调度控制中心,通知制定反馈校正策略对输出的功率进行校正

《基于组合模型的短期风电功率区间预测及经济调度》

在风电功率的点预测阶段,采用深度学习中能够充分挖掘时间序列时序特征的双 向长短期记忆神经网络进行预测,并用贝叶斯优化对网络的超参数进行优化,得到趋势分量、 振荡分量和随机分量的点预测值;

在风电功率的预测区间构造阶段,利用混合核密度估计方法对振荡分量和随机分量的预测误差进行误差分布估计,进行概率区间预测,再叠加点预测值得到总体的风电功率区间预测结果。

最后,针对风电功率预测的不确定性问题,建立了基于风电功率区间预测的电力系统经济调度模型,将区间预测信息纳入到调度模型中,调度模型中除了考虑发电机组的发电成本外,还计及了污染处理成本和系统的备用容量成本。通过制定蜂群最优引导策略和引入动态概率对人工蜂群算法进行了改进,使用该算法对调度模型进行求解。

区间的信息怎么引入调度模型呢?

随着电力市场的不断发展,备用容量逐渐被纳入有偿服务,备用容量是指发电系统中,为保障用电需求而储备的额外容量,一但供电出现问题,备用容量就会立即接收,以保障电力的连续供应。在含有风电等具有不确定性电源的电力系统中,为保障电网的安全稳定运行,更需要安排足够的备用容量。

目标函数:

利用风电功率的预测区间来确定系统中用于平衡风电不确定的正、负备用容量,正负备用容量则可以由风电功率的预测区间的上、下界确定。

备用容量约束:

《基于区间预测调节的双时间尺度多源微网优化调度》

对光伏发电、风力发电、微燃机冷热电三联供系统以及蓄电池等不同微源进行分析建模,提出日前调度策略

然后再日前调度结果的基础上,加入考虑区间预测不确定性的滚动优化对源荷的能量匹配进行实时修正,作为第二时间尺度的调度策略。

本文使用统一误差百分比表示实际负荷需求量与日前预测量的差值(干嘛用的?)

实时调度优化中,控制变量的数目较少,仅为可控负荷与蓄电池

目标函数包括运行维护成本和负荷补偿成本

采用考虑统一预测误差的滚动优化策略对第二时间尺度即实时调度进行优化,以日前优化的调度值配合前一个时间段的实际值作为实时调度的参考基准值。每15min对后续4小时的时间进行第二轮的滚动预测优化。

区间可能度法:根据区间可能度法对基本电平衡约束条件进行确定性转化

是一种处理不确定性和模糊性问题的数学方法,属于模糊数学的范畴。在模糊数学中,区间可能度法用于衡量一个模糊时间发生的可能性大小。

《基于组合区间预测的家庭能量管理系统优化调度》

基于数据驱动方法,提出来居民用电行为相似日提取方法,综合运用神经网络预测算法和非参数核密度估计方法,提出了考虑不确定性的组合区间预测模型。

建立系统的优化调度模型,引入区间数理论求解不确定性优化问题,在二进制例子群优化算法中调用CPLEX求解器,对系统进行优化调度。

所提出的区间预测方法和优化调度方法能够降低不确定性对系统的影响。

不确定性预测

思路:在传统预测方法的基础上,通过描述预测结果的概率分布函数或者置信区间等信息,来反映带预测值的范围。

区间预测的结果是一个确定期望水平对应的区间,能够反映出在某一期望水平下待预测值的范围。

概率密度预测的结果是一个概率密度函数,能够反映出待预测值的概率分布。

区间预测的评价指标:可靠性和清晰度(区间覆盖率&区间平均带宽)

可靠性:预测区间包含实际值的概率,概率越高表示该预测区间越可靠

清晰度:预测区间的宽度,区间上限和区间下限之间的差值,宽度越小表示该预测区间越清晰

综合评价指标:可靠性和清晰度是两个对立的指标,需要对这两个评价指标进行综合考量,数值越小,区间的综合性能越强

组合区间预测方法:

在相似的外界环境和自身用电习惯的条件下,同一居民用户的分布式电源出力曲线和家庭用电设备负荷曲线存在一定的周期性,即相似日和预测日的相关曲线是相似的,并且存在一定的相关性。

对得到的相似日进行数据提取,通过BP神经网络进行多次预测,然后利用非参数核密度估计对得到的“点预测”结果进行分析,在不同置信水平下即可得到对应的预测区间。

非参数核密度估计是通过样本本身进行估计和预测

假设随机变量x的密度函数为f\left ( x \right ),计f\left ( x \right )=F^{'}\left ( x \right )f\left ( x \right )的简单估计:

f\left ( x \right )=\frac{F\left ( x+h \right )-F\left ( x-h \right )}{2h}   n为样本总量,h为窗宽

本文选择采用高斯核函数

确定核函数和窗宽,对于多组预测结果进行非参数核密度估计,得到待预测量的概率密度函数

给定某一置信水平\mu,可得到预测区间,该预测区间以\mu的概率包含实际值,置信水平\mu对应的预测区间为:

按小时获得对应时间段的区间

基于区间数理论的家庭鞥能量管理系统优化调度

目标函数:居民用电成本最小

目前对不确定性的量化有三种方法:模糊数、概率分布以及区间数

模糊数:被用来表示描述性语义,如很好、普通,无法对不确定性进行定量描述

概率分布:通过描述不确定性参数取某一定值的概率来对不确定性进行量化,但这种方法需要基于大量精确数据,且在后续优化中会增加计算维度,造成“数据爆炸”的情况

区间数:将不确定性参数用区间数的形式进行量化,并带入到数学模型中,转化为约束条件

区间数与实数之间的比较可以用区间可能度\rho来表示,区间数:\hat{a},实数:\theta

确定不确定性参数,用区间数表示该不确定性参数,然后将区间数带入到数学模型中,运用区间数的四色运算,转化为约束条件

《基于混合模型的超短期风速区间预测》

提出一种基于模糊信息粒化、改进长短期记忆网络与差分自回归移动平均模型的混合区间预测模型。首先采用自适应噪声的完全集合经验模态分解模型对原始风速数据进行分解,并根据模糊熵重构得到新序列,对每个序列一次进行模糊信息化,获得最大值、最小值及平均值。

利用改进长短记忆网络模型预测高频序列,差分自回归移动平均模型预测低频序列与余项,将所得上下界求和得到最终风速区间。

自适应噪声完全集合经验模态分解

原始信号:X\left ( t \right ),经CEEMDAN分解得到第k+1个本征模态函数(IMF):

I_{MFk+1}=\frac{1}{I}\sum_{i=1}^{I}E_{1}\left [ r_{k}\left ( t \right )+\varepsilon _{k}E_{k}\left ( W^{i}\left ( t \right ) \right ) \right ]

W^{i}\left ( t \right )为第i次实验添加的白噪声,\varepsilon _{k}为第k个信噪比,E_{k}为经EMD分解所获得的第k个IMF,r_{k}为第k个IMF的残差。

残差最终结果:

R\left ( t \right )=x\left ( t \right )-\sum_{k=1}^{K}I_{MFK}

模糊熵

是一种度量时间序列复杂程度的方法,基于模糊集的概念,应用指数函数将向量的相似性作为模糊化度量,使模糊熵值能够随参数的调整而稳定变化,是近似熵与样本熵的优化。

具体步骤:

一个共有N点的采样序列:\left \{ u\left ( j \right ):1\leq j\leq N \right \}

按照顺序重构生成一组n维矢量:

X_{j}^{m}=\left \{ u\left ( j \right ),u\left ( j+1 \right ),L,u\left ( j+n-1 \right ) \right \}-u_{0}\left ( j \right )  j=1,2,L,M-n

第一项:第j个点开始连续n个u的值;第二项:均值

两个n维矢量X_{i}^{n}X_{j}^{n}对应元素差值的最大值d_{ij}^{n}

d_{ij}^{n}=d\left [ X_{i}^{n},X_{j}^{n} \right ]=max_{0<k<n-1}\left \{ \left | u\left ( j+k \right ) -u_{0}\left ( j \right )-\left ( u\left ( i+k \right ) -u_{0}\left ( i \right )\right )\right | \right \}

两个n维矢量X_{i}^{n}X_{j}^{n}相似度D_{ij}^{n}D_{ij}^{n}=exp\left [ \left ( -d_{ij}^{n} \right )^{m} /r\right ]

\phi ^{n}\left ( m,r\right )=\frac{1}{M-n}\sum_{i=1}^{M-n}\left \{ \frac{1}{M-n-1} \sum_{j=1,j\neq i}^{M-n}D_{ij}^{n}\right \},m为维数,r为相似容限度

模糊熵:F_{E}\left ( m,r,N \right )=In\phi ^{m}\left ( m,r \right )-In\phi ^{m+1}\left ( m,r \right )

模糊信息粒化

依据大量复杂数据信息自身的特性与功能将其划分为若干个简单的数据集合,称为信息粒化,用模糊集的理论进行信息粒化的方式

具体步骤:

①窗口划分是将整个数据序列分成若干数目的子序列,每个子序列称为一个窗口

②信息的模糊化是每个窗口产生对应的模糊粒,模糊粒可表示对应窗口的数据

模糊化过程的本质是确定一个函数A的过程,A是模糊概念G的隶属函数

(1)对原始风速数据进行CEEMDAN分解,得到若干组具有不同特征的子序列,再计算各子序列的模糊熵值,对子序列进行重构得到新的子序列。

分解结果:

模糊熵值:

分析:基于模糊熵值的分布区间,发现IMF1与IMF2分布在[2,4],发现IMF3与IMF4分布在[0.1,0.5],发现IMF5、IMF6和IMF7分布在[0,0.02],按照分布区间,重新构成新的序列

(2)将此时所得到的n个重构序列分别进行模糊信息粒化处理,获得n组最小值、最大值和平均值数据,并归一化处理。

以5个采样点(5min)为一个窗口,每个分量均可提出区间下限、均值和区间上限

......

(3)使用改进的LSTM模型与差分自回归移动平均模型分别对具有不同特征的重构序列的low、up、R进行预测,得到若干组区间上下限与反应区间趋势的值,将所有区间加总求和得到最终的超短期风速区间结果。

提取新序列1的low和up,采用LSTM预测得到区间下界和区间上界

对新序列2和3构建ARIMA模型,得到区间上下界的预测结果

全部结果加总求和得到总预测区间

《基于电动汽车充电负荷场景区间预测的孤岛型微电网鲁棒优化调度》

采用多相关日充电场景生成的EV充电负荷区间预测方法,首先,考虑电动汽车充电行为受历史充电行为影响较大,基于斯皮尔曼等级相关系数,找出与待预测日EV充电负荷相关性强的历史日,构建EV原始多相关日充电场景集以刻画其充电行为。然后,基于改进变分自编码器生成与原始多相关日充电场景集的概率分布相似且存在时序差异的海量EV生成多相关日充电场景。最后在生成多相关日充电场景集中筛选与已知历史日EV充电负荷数据相关性高的多个场景组成相关场景集。根据相关场景集最后一日的数据均值及数据区间分别获得待预测日EV充电负荷确定性预测结果及区间预测结果。

EV充电负荷原始多相关日充电场景集——OMCDCSS

生成多相关日充电场景——GMCDCS

《基于QD和因果注意力TCN的光伏功率区间预测》

提出一种基于QD和因果注意力TCN的短期光伏功率区间预测方法,首先针对TCN网络在时间尺度上提取特征不细致的缺点,应用因果注意力机制对模型结构进行改进,捕获当前时刻和过去时刻序列的遗漏信息,提取有益于构建区间上下界的特征,然后采用DQ损失对区间预测指标进行优化,输出给定置信度下的预测区间。

DQ损失

区间预测损失

对于n组数据,定义第i组输入变量为x_{i},观测变量为y_{i},对应模型的预测区间分别为预测上界\hat{y}_{ui}和预测下界\hat{y}_{li}

置信度:期望观测值落入预测区间的概率需要大于特定数值

P\left ( \hat{y}_{li}\leq y_{i}\leq \hat{y}_{ui} \right )\geq \alpha   P——概率  \alpha——置信度

用观测值落入预测区间的数量和总数据数量的比例来代替概率值

k_{i}=\left\{\begin{matrix} 1, \hat{y}_{li}\leq y_{i}\leq \hat{y}_{ui}\\ 0, y_{i}< \hat{y}_{li},y_{i}> \hat{y}_{ui} \end{matrix}\right.

c=\sum_{i=1}^{n}k_{i}

预测区间覆盖率:PICP ,反映模型预测区间的可靠性,越大越可靠 \beta

平均预测区间宽度:MPIW ,衡量模型预测区间的准确度,越窄准确度越高 \gamma

\beta =\frac{c}{n}

\gamma =\frac{1}{n}\sum_{i=1}^{n}\left ( \hat{y}_{ui}-\hat{y}_{li} \right )

利用TCN可对时间序列大范围感受域提取特征,在其基础上增加残差因果注意力机制使其提取特征时遵守时间因果,同时应用QD损失建立由区间质量驱动的短期光伏功率区间预测模型。

首先利用短期气象数据和历史功率数据构造输入变量,并归一化处理,然后按照模型输入对输入变量序列化处理

其次将数据集划分为时间连续的训练集、验证集、测试集

最后,设定置信度和提前预测步数,建立基于QD损失的因果注意力机制TCN模型,模型的输出分别为预测区间的上界和下界

《Ensemble Conformalized Quantile Regression for Probabilistic Time Series Forecasting》

概率时间序列预测的集成整合分位数回归

提出一种新的概率预测方法——集合保形分位数回归(EnCQR),EnCQR构建了无分布和近似边际有效的预测区间,适用于非平稳和异方差时间序列数据。

本文通过结合和利用分位数回归(QR)和保形预测(CP)的优势,直接解决了为时间序列数据构建自适应和有效预测区间的挑战。

将EnCQR用于三种不同的回归算法:随机森林、另外两个用于时间序列的神经网络

x、y属于随机变量,分别便是输入的观测值和标签

\pi \left ( x, y \right )表示x和y的联合分布

\pi \left ( y|x \right )表示给定x的y的条件分布

U与L是x到y的映射

预测区间的宽度:U\left ( x_{n+1} \right )-L\left ( x_{n+1} \right )由置信水平\alpha控制

边际覆盖&条件覆盖

数据点i对应一个患者,x_{i}编码相关协变量(年龄、家族史、当前症状等),y_{i}测量定量结果(药物治疗后血压降低),当一个协变量为x_{n+1}的患者来到一声办公室,医生预测他能的最终结果为y_{n+1}

设置\alpha为0.05,医生的陈述有95%的可能性成立

对于边际覆盖率,该陈述对所有可能的患者平均有95%的准确概率,由于考虑的是平均值,因此对于特定年龄组的患者,该陈述的准确性可能明显较低,甚至为0%,但对于其他年龄组,该陈述的覆盖率高于95%。

对于条件覆盖,医生所做的声明必须有95%的概率适用于每个病人,无论年龄大小,所以条件覆盖更难保证。

 异构集成:成员学习器来自几种不同的分类或回归算法

同构集成:成员学习器使用相同的算法生成,但它们在不同的数据上进行训练

本文提出的集成共形分位数回归(EnCQR)算法,将QR学习器集成与CP相结合来构建时间序列的预测区间。

EnCQR的步骤:

1、训练合奏学习者(1-9行):同构学习器在第1-4行构建的独立子集上进行训练。接下来通过聚合在不包括样本i的子集上训练的所有学习器(第7行),使用集成学习器为每个观测i构建留一估计。然后计算聚合的留一预测与训练标签之间的一致性分数(第8行)。

2、依次为测试集中的观测值构建预测区间(第10-15行):使用集成学习器预测测试集中的观察值,该学习器为预测区间上限和下限生成B分位数函数。最终的预测区间极限是通过首先汇总估计的分位数函数,然后使用在训练区间计算的样本外残差的(1-\alpha)-th分位数对它们进行合成器来获得。

3、更新残差(第16-20行):通过替换列表中最老的5元素来预测每个新观测值后,更新样本外残差使其长度保持不变。

实验

重点比较EnCQR于仅基于QR或CP的方法获得的预测区间,这两种方法使用相同的底层回归算法,为了展示EnCQR的多功能性,考虑了基于深度学习框架和传统机器学习方法的回归算法。为特定数据集找到最佳的底层回归算法可以提高EnCQR和竞争方法的性能,但不能提高它们在性能上的相对差异。

数据集

所有的时间序列被划分为三个不相交的集,训练集、测试集和验证集,并通过缩放值使其位于区间[0,1]内进行独立归一化。

前四个数据集的时间序列具有小时分辨率,并通过滑动窗口重塑为大小为168-24的输入输出对,最后一个数据集,输入输出对为24-6

葡萄牙数据集:由位于葡萄牙的270个客户的电力消耗时间序列组成,从2012年-2014年,数据以小时为单位,用电量以千瓦为单位,从270个时间序列中任意选择5个,对于每个时间序列,训练/验证/测试分割为12/12/12个月。

Elvia数据集:描述了三类终端用户的用电量:工业、家庭和木屋。由2018年6月1日-2020年6月1日每小时记录的两个时间序列组成,其中包含观测到的电力负荷和温度预测,从每个用户类别中男任意选择一个时间序列。训练/验证/测试分割为12/6/6个月。

太阳能和风能数据集:以2017年1月-2020年1月的每小时兆瓦时为单位记录。两个数据集都包含6个环境气候特征。训练/验证/测试分割为12/12/12个月。

温度数据集:数据集中包含15个气象变量,其中环境温度为2009年1月-2016年1月每10分钟采集一次。对数据集进行次采样以获得每小时的分辨率,数据集前80%用于训练,10%用于验证,10%用于测试。

衡量每个时间序列的异方差,首先计算所有时间序列的标准差

h_{1}d_{2}为第2天第1小时的测量值,数值越大,表明不同时间段之间的变异性越大,即异方差策划高难度越高。

葡萄牙数据集时间序列250的变异程度最低,太阳和温度时间序列的变异性程度最大。

参考模型:将EnCQR与EnbpI和QR进行比较,所有方法都基于相同的底层回归算法,此外,将SARIMA模型作为时间序列预测的传统统计模型的代表。SARIMA是一个基准,而不是EnCQR的竞争对手。由于它不能模拟异方差,它产生的预测区间是不适应的,只有在限制假设下才有效。

回归算法:使用分位数随机森林和QRNN作为基础回归算法进行实验。鉴于神经网络在近期时间序列预测研究中的突出地位,决定使用两种不同的QRNN架构:时间卷积网络(TCN)长短期记忆神经网络(LSTM)

指标

预测区间覆盖率(PICP):

PICP=\frac{1}{n}\sum_{i=1}^{n}c_{i}, c_{i}=\left\{\begin{matrix} 1, y_{i}\in \left [ L_{i},U_{i} \right ]\\ 0, y_{i}\notin \left [ L_{i},U_{i} \right ] \end{matrix}\right.

预测区间标准化平均宽度(PINAW):

PINAW=\frac{1}{nR}\sum_{i=1}^{n}\left ( U_{i}-L_{i} \right ), R=y_{max}-y_{min}

基于覆盖宽度的标准(CWC):

CWC=\left ( 1-PINAM \right )e^{-\eta \left ( PICP-\left ( 1-\alpha \right ) \right )^{2}}

实验结果:

EnbPI构建的预测区间的宽度有很大差异,EnCQR产生的有效预测区间是最清晰的。对于异方差程度较低的时间序列,EnbPI和EnCQR构建的预测区间质量大致相等,而对于异方差较大的时间序列,EnCQR构建的预测区间明显更清晰,信息量更大。

对于葡萄牙数据集,EnbPI达到了与EnCQR相似的覆盖水平,但EnbPI中的PINAW通常更高,即预测区间更宽,信息量更少。

对于异方差更大的太阳数据集,EnbPI与EnCQR之间的PINAW差异甚至更大

SARIMA、QRF和QRNN产生的预测区间在不同数据集上的PICP差异很大,并且不具有CP模型的覆盖保证,事实上,可能会构建非常窄的区间,预测区间覆盖率明显低于期望的置信水平。

以太阳数据集为例,其数据具有很强的季节性模式,应为大部分能量是在一天的中戏那时间产生的,所以可以从绘图中清晰地看出时间序列中存在异方差。

提出的EnCQR——一种概率事件序列预测方法,利用CP生成具有有效覆盖率的预测区间,并利用集成学习器执行QR来处理异方差数据。在具有不同异方差程度的真实数据集上进行的实验表明,与仅基于CP或QR的方法相比,本文提出的方法具有更好的性能。

在清晰度方面优于基于cp的模型,如EnbPI

在预测区间覆盖方面优于qr的模型

对于均方差数据,EnCQR在预测区间质量方面表现与EnbPI大致相同

对于异方差数据,EnCQR优于EnbPI,因为预测区间的宽度很好地适应局部变化

  • 4
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
基于GPUCloudSim的虚拟机调度方法研究主要涉及在云计算环境中,如何有效地调度虚拟机以提高系统性能和资源利用率。GPUCloudSim是一个基于云仿真的工具,专门用于GPU计算领域的云计算模拟。 虚拟机调度是云计算环境中的一个核心问题,在GPUCloudSim中的虚拟机调度方法研究主要包括以下几个方面: 首先,研究目标是提高系统的性能和资源利用率。通过合理的虚拟机调度,可以使得GPU计算任务在不同的虚拟机上得到合理的分配,从而减少资源闲置和浪费,提高系统的整体性能。 其次,研究内容包括虚拟机的选择和部署。通过考虑虚拟机的性能指标、用户需求、虚拟机之间的互相影响等因素,选择合适的虚拟机进行部署。例如,可以根据虚拟机的GPU类型、内存大小、带宽等硬件资源来进行选择。 同时,研究还包括虚拟机的迁移策略。在云计算环境中,由于用户需求的变化,需要动态地调整虚拟机的分配。通过研究虚拟机的迁移策略,可以根据不同的迁移算法和策略,在保证用户服务质量的前提下,最大程度地减少虚拟机的迁移成本。 最后,研究还需要考虑其他因素的影响,例如虚拟机之间的互访延迟、网络带宽、数据传输速度等。通过考虑这些因素,可以制定更加合理的虚拟机调度策略,提高系统的性能和稳定性。 综上所述,基于GPUCloudSim的虚拟机调度方法研究是一个重要的课题,在云计算环境中具有重要的应用价值。通过合理的虚拟机调度策略,可以提高系统的性能和资源利用率,为云计算领域的发展做出贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值