spssmoderler线性回归分析实例

本文介绍了线性回归分析的基本概念及其在SPSSModerler中的应用步骤。通过汽车性能与价格关系的实例,阐述了如何确定自变量与因变量、构建回归模型以及分析模型结果,强调理解回归分析原理和解释模型结果的重要性。
摘要由CSDN通过智能技术生成

一、首先,对回归分析的概念有一个清楚地认知

在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。

按因变量是否连续又可分为线性回归(因变量为连续变量)和逻辑回归(因变量为逻辑变量),今天主要讲的是线性回归在spssmoderler中的实现步骤。

二、下面对线性回归方程及一些概念进行一些大致的解析:

1、多元线性回归可表示为Y=a+b1*X +b2*X2+b3*x3+...+bn*Xn+ e,其中a表示截距,b表示直线的斜率,e是误差项。回归方程拟合优度判定系数 R²取值为(0,1)越接近1,表示拟合度越好。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值