一、首先,对回归分析的概念有一个清楚地认知
在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
在大数据分析中,回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
按因变量是否连续又可分为线性回归(因变量为连续变量)和逻辑回归(因变量为逻辑变量),今天主要讲的是线性回归在spssmoderler中的实现步骤。
二、下面对线性回归方程及一些概念进行一些大致的解析:
1、多元线性回归可表示为Y=a+b1*X +b2*X2+b3*x3+...+bn*Xn+ e,其中a表示截距,b表示直线的斜率,e是误差项。回归方程拟合优度判定系数 R²取值为(0,1)越接近1,表示拟合度越好。