tensorflow使张量转置_[腾讯机智]利用XLA提升TensorFlow训练性能的案例介绍

本文介绍了在TensorFlow中,使用XLA进行性能优化遇到的问题及解决方案。在FP32下开启XLA训练效果不佳,但在混合精度下能提升94%的训练速度。通过分析timeline,发现DataFormatVecPermute OP导致性能下降。解决办法是在XLA注册中添加对“host”标记DataFormatVecPermute的支持,消除XLA处理冲突,实现性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 在开始前,先看一下效果

优化后,在单卡V100上,batch_size=128 测试每秒处理样本数

  1. 优化后相比于优化前加速了50%左右;
  2. 优化后开启XLA相对于不开启XLA加速了40%左右。

54a27112544d36b85656c613ce881c51.png

再来回顾一下问题的解决过程~~

1. 问题背景

对在某监督学习场景中,发现在FP32下开启XLA训练呈负优化效果,而在混合精度下开启XLA训练有约94%的加速效果。

在单卡V100上,batch_size=128 测试每秒处理样本数,实验结果如下:

a5b65da3f89debd4b4044c9f985b3284.png

2. 问题调查

对比 FP32+XLA(图1)和 混合精度+XLA(图2)的 timeline,发现混合精度+XLA只有2个_XlaRun,而FP32+XLA有8个_XlaRun,且两个_XlaRun中间有一些额外的OP,耗时80

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值