machine learning
Gavid-jh
不努力变好,怎能与你并肩……
展开
-
梯度下降法的三种形式BGD(批量梯度下降)、SGD(随机梯度下降)以及MBGD(小批量梯度下降)
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为: 对应的能量函数(损失函数)形式为:...转载 2018-11-10 16:10:37 · 454 阅读 · 0 评论 -
Matplolib常用函数和常用技巧总结(持续更新)
Matplotlibimport matplotlib.pyplot as plt常用函数`matplotlib.pyplot.plot`(**args*, *scalex=True*, *scaley=True*, *data=None*, ***kwargs*)`matplotlib.pyplot.xticks`(*ticks=None*, *labels=None*, ***kwargs*)...原创 2019-05-07 22:13:09 · 642 阅读 · 0 评论 -
Pandas常用函数和常用技巧总结(持续更新)
pandas常用函数`pandas.read_csv`(*filepath_or_buffer*)`pandas.isnull`(*obj*)`DataFrame.head`(*n=5*)`DataFrame.tail`(*n=5*)`DataFrame.sort_values`(*by*, *axis=0*, *ascending=True*, *inplace=False*, *kind='q...原创 2019-05-07 21:30:13 · 442 阅读 · 0 评论 -
Numpy的常用函数和常用技巧总结
Numpy常用函数numpy.genfromtxt(**fname** = "",delimiter = "", dtype = "",**skip_header** = 1)numpy.array(xxx)`numpy.ravel`**(**a**,** *order='C'***)**ndarray.`astype`**(**dtype**,** *order='K'***,** *casti...原创 2019-05-07 18:05:57 · 827 阅读 · 0 评论 -
深度学习思维导图(基于TensorFlow框架)
文章目录深度学习深度学习介绍深度学习与机器学习的区别深度学习的应用场景:深度学习框架介绍TensorFlow 的特点TensorFlow 的安装TensorFlow 框架介绍TF 数据流图图与TensorBoard会话张量Tensor变量OP高级API案例:实现线性回归数据读取、神经网络基础文件读取流程图片数据二进制数据TFRecords神经网络基础神经网络原理案例:Mnist手写数字识别线性神经...原创 2019-03-17 19:12:00 · 3700 阅读 · 0 评论 -
机器学习思维导图(基于sklearn)
文章目录机器学习概述什么是机器学习?机器学习算法分类机器学习开发流程特征工程数据集特征工程介绍分类算法sklearn转换器和估计器K-近邻算法模型选择与调优朴素贝叶斯算法决策树集成学习方法之随机森林回归与聚类算法线性回归过拟合与欠拟合带有L2正则化的线性回归 — 岭回归分类算法:逻辑回归与二分类模型的保存与加载无监督学习思维导图图片形式机器学习概述什么是机器学习?数据+模型+预测数据集...原创 2019-03-02 23:34:22 · 5580 阅读 · 1 评论 -
机器学习中,有关范数的理解
在机器学习中的监督类学习的主要解决问题就是 规则化参数同时最小化误差最小化误差目的是让模型拟合训练数据。规则化参数的目的是防止模型过分拟合训练数据。参数太多,会导致模型复杂度上升,容易过拟合,也就是训练误差小,测试误差大。因此,我们需要保证模型足够简单,并在此基础上训练误差小,这样训练得到的参数才能保证测试误差也小,而模型简单就是通过规则函数来实现的。规则化项可以是模型参数向量的范...原创 2019-01-23 12:24:23 · 236 阅读 · 1 评论 -
Logistic回归算法总结
1.Logistic回归算法的前提基础1.1回归概念假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。1.2sigmoid函数问题需求:二值型输出分类函数:在两个类的情况下,上述函数输出 0 或 1.或许你之前接触过具有这种性质的函数,该函数称为 海维塞得阶跃函数(Heaviside step function),或者...原创 2018-11-24 20:27:43 · 843 阅读 · 0 评论 -
支持向量机算法(SVM)总结
SVM算法 开发流程收集数据:可以使用任意方法。准备数据:需要数值型数据。分析数据:有助于可视化分隔超平面。训练算法: SVM的大部分时间都源自训练,该过程主要实现两个参数的调优。测试算法:十分简单的计算过程就可以实现。使用算法:几乎所有分类问题都可以使用SVM,值得一提的是, SVM本身是一个二类分类器,对多类问题应用SVM需要对代码做一些修改。SVM 算法特点优点:...原创 2018-11-25 23:57:49 · 605 阅读 · 0 评论 -
学习kNN算法里面的python语法总结
dataSetSize = dataSet.shape[0]1.shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。它的输入参数可以是一个整数表示维度,也可以是一个矩阵。如果输入参数是一维矩阵,则返回1个数 如果输入参数是二维矩阵,则返回2个数 如果输入参数是多维矩阵,则返回多个数 ...原创 2018-11-20 10:16:12 · 933 阅读 · 0 评论 -
学习决策树算法的总结
决策树 须知概念信息熵 & 信息增益熵: 熵(entropy)指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。信息熵(香农熵): 是一种信息的度量方式,表示信息的混乱程度,也就是说:信息越有序,信息熵越低。例如:火柴有序放在火柴盒里,熵值很低,相反,熵值很高。信息增益: 在划分数据集前后信息发生的变化称为信息增益。 决策树 工作原理检...原创 2018-11-22 16:58:37 · 232 阅读 · 0 评论 -
学习kNN算法的总结
KNN工作原理假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。 计算新数据与样本数据集中每条数据的距离。 对求得得所有距离进行排序(从小到大,越小表示越相似)。 取前K(K一般小于等于20)个样本数据对应的分类标签。 3.求K个数据中出现次...原创 2018-11-22 16:54:31 · 367 阅读 · 0 评论 -
学习朴素贝叶斯算法的总结
朴素贝叶斯算法 工作原理提取所有文档中的词条并进行去重获取文档的所有类别计算每个类别中的文档数目对每篇训练文档: 对每个类别: 如果词条出现在文档中-->增加该词条的计数值( for循环或者矩阵相加) 增加所有词条的计数值(此类别下词条总数)对每个类别: 对每个词条: ...原创 2018-11-23 22:05:08 · 830 阅读 · 0 评论 -
Seaborn常用函数总结(持续更新)
Seaborn常用函数`seaborn.set_style`**(***style=None***,** *rc=None***)**`seaborn.despine`**(***fig=None***,** *ax=None***,** *top=True***,** *right=True***,** *left=False***,** *bottom=False***,** *offset=...原创 2019-05-11 16:54:03 · 3790 阅读 · 1 评论