KMP算法的一个优点是不需要在输入中回退,这使得KMP子字符串查找算法更适合在长度不确定的输入流中进行查找,需要回退的算法在这种情况下则需要复杂的缓冲机制。
dfa[pat.charAt(0)][0] = 1;
for (int X = 0, j = 1; j < M; j++)
{
for (int c = 0; c < R; c++)
dfa[c][j] = dfa[c][X];
dfa[pat.charAt(j)][j] = j+1;
X = dfa[pat.charAt(j)][X];
}
初始化dfa[][]数组的第一列,也就是第一个字符串匹配的DFA状态。dfa二维数组中第一维表示的是输入的字符,第二维表示的是当前状态,dfa[][]表示的是下一状态。
for循环语句中:
1.匹配失败,则将dfa[][X]复制到dfa[][j];
2.匹配成功,则将dfa[pat.charAt(j)][j]设定为j+1(该结果对1有覆盖作用);
3.更新X的值(该X值对应下一个循环的j)
理解:
在匹配第j个字符串时,前j-1个字符串已经完全匹配,如果第j个也成功,就继续下一步,如果失败,需要知道的是jx~j-1位置范围,能匹配pattern的最大长度。这样,就自然而然的引入了X来记录在匹配第j个字符串时,1~j-1范围内字符串能匹配的最大长度,也就是到达DFA的状态。而X也可以迭代生成,对于j状态下的X可以理解为j-1状态下的X进行dfa[pat.charAt(j-1)][X]得到。
得到的效果如图:
参考:https://blog.csdn.net/congduan/article/details/45459963