数据结构与算法之 队列和广度优先搜索(BFS)

 队列和 BFS

 

广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径。在本文中,我们提供了一个示例来解释在 BFS 算法中是如何逐步应用队列的。

洞悉


 

1. 结点的处理顺序是什么?

在第一轮中,我们处理根结点。在第二轮中,我们处理根结点旁边的结点;在第三轮中,我们处理距根结点两步的结点;等等等等。

与树的层序遍历类似,越是接近根结点的结点将越早地遍历

如果在第 k 轮中将结点 X 添加到队列中,则根结点与 X 之间的最短路径的长度恰好是 k。也就是说,第一次找到目标结点时,你已经处于最短路径中。

2. 队列的入队和出队顺序是什么?

如上面的动画所示,我们首先将根结点排入队列。然后在每一轮中,我们逐个处理已经在队列中的结点,并将所有邻居添加到队列中。值得注意的是,新添加的节点不会立即遍历,而是在下一轮中处理。

结点的处理顺序与它们添加到队列的顺序是完全相同的顺序,即先进先出(FIFO)。这就是我们在 BFS 中使用队列的原因。

 

 广度优先搜索 - 模板


之前,我们已经介绍了使用 BFS 的两个主要方案:遍历找出最短路径。通常,这发生在树或图中。正如我们在章节描述中提到的,BFS 也可以用于更抽象的场景中。

在本文中,我们将为你提供一个模板。然后,我们在本文后提供一些习题供你练习。

在特定问题中执行 BFS 之前确定结点和边缘非常重要。通常,结点将是实际结点或是状态,而边缘将是实际边缘或可能的转换。

 

模板 I


 

在这里,我们为你提供伪代码作为模板:

 

/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                add next to queue;
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}

 

  1. 如代码所示,在每一轮中,队列中的结点是等待处理的结点
  2. 在每个更外一层的 while 循环之后,我们距离根结点更远一步。变量 step 指示从根结点到我们正在访问的当前结点的距离。

模板 II


有时,确保我们永远不会访问一个结点两次很重要。否则,我们可能陷入无限循环。如果是这样,我们可以在上面的代码中添加一个哈希集来解决这个问题。这是修改后的伪代码:

/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    Set<Node> used;     // store all the used nodes
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    add root to used;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                if (next is not in used) {
                    add next to queue;
                    add next to used;
                }
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}

有两种情况你不需要使用哈希集:

  1. 你完全确定没有循环,例如,在树遍历中;
  2. 你确实希望多次将结点添加到队列中。

 

发布了25 篇原创文章 · 获赞 3 · 访问量 2292
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览