序列模型第三周 序列模型和注意力机制

3.1 基础模型 sequence to sequence模型在机器翻译和语音识别方面都有着广泛的应用。 上图是机器翻译的例子,使用“编码网络(encoder network)”+“解码网络(decoder network)”两个RNN模型组合的形式来解决。encoder network将...

2019-09-01 10:47:17

阅读数 4

评论数 0

卷积神经网络第四周 特殊应用:人脸识别和神经风格转换

4.1 什么是人脸识别 人脸验证face verification:输入一张人脸图片,验证输出与模板是否为同一人,是一对一问题。 人脸识别face recognition:输入一张人脸图片,验证输出是否为K个模板中的某一个,是一对多问题。 人脸识别更难。因为假设人脸验证系统的错误率是1%,...

2019-06-30 23:12:14

阅读数 7

评论数 0

序列模型第一周 循环序列模型

1.1 为什么选择序列模型 1.2 数学符号 1.3 循环神经网络模型 1.4 通过时间的反向传播 1.5 不同类型的循环神经网络 1.6 语言模型和序列生成 1.7 对新序列采样 1.8 带有神经网络的梯度消失 1.9 GRU单元 1.10 长短期记忆(...

2019-05-22 21:37:57

阅读数 27

评论数 0

序列模型第二周 自然语言处理与词嵌入

2.1 词汇表征 2.2 使用词嵌入 如果采用featurized representation对每个单词进行编码,再构建该RNN模型。对于一个新的句子:Robert Lin is a apple farmer, 由于这两个句子中,“apple”与“orange”特征向量很...

2019-05-15 18:54:40

阅读数 25

评论数 0

卷积神经网络第三周 目标检测object detection

3.1 目标定位object localization 损失函数可以用上图的平方误差,还可以用逻辑回归的随时函数,类标签c1,c2,c3也可以通过sotfmax输出。比较而言,平方误差已经能够取得比较好的效果。 3.2 特征点检测 除了使用矩形区域检测目标类别和位置外,我...

2019-05-14 22:01:45

阅读数 22

评论数 0

卷积神经网络第二周 编程作业

用keras框架完成检测图片是不是笑脸的模型: import numpy as np from keras import layers from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormali...

2019-05-06 17:44:14

阅读数 53

评论数 0

卷积神经网络第二周 卷积神经网络:实例探究

2.1 为什么要进行实例探究 本周CNN实例提纲: ResNet残差网络(训练了一个深达152层的神经网络)和Inception神经网络很有趣,很多思路都是多学科融合的产物,就算不主攻CV,也可以发现一些有趣的思路。 2.2 经典网络 2.3 残差网络 2.4 残...

2019-05-06 13:42:39

阅读数 41

评论数 0

卷积神经网络第一周 编程作业

2.py: 前面几个函数不是必须的,可以帮助理解卷积运算。 主要调节num_epochs,learning_rate参数。 数据集处理后的维度: X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape...

2019-05-05 16:50:15

阅读数 27

评论数 0

卷积神经网络第一章 卷积神经网络

1.1 计算机视觉 一般的CV问题包括以下三类: 图片分类已经见过。 目标检测中首先要计算出图中有哪些物体,再将他们模拟成一个个盒子,以便你的车可以避开他们。 风格转换是用神经网络把你的照片和一张风格照片融合到一起,描绘出一张新的照片,整体轮廓来自左边,风格来自右边。 使用传统神经网...

2019-05-05 11:17:24

阅读数 933

评论数 2

改善深层神经网络第三周 编程作业

1.py: import numpy as np import h5py import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.python.framework import ops import...

2019-05-04 11:41:34

阅读数 31

评论数 0

结构化机器学习项目第二周 机器学习策略(2)

2.1 进行误差分析 2.2 清楚标注错误的数据 2.3 快速搭建你的第一个系统,并进行迭代 2.4 在不同的划分上进行训练并测试 2.5 不匹配数据划分的偏差和方差 2.6 定位数据不匹配 2.7 迁移学习 2.8 多任务学习 2.9 什么是端到端的深度学习 2.10...

2019-04-27 16:21:26

阅读数 12

评论数 0

结构化机器学习项目第一周 机器学习策略ML strategy

1.1 为什么是ML策略 这节课将要将一些分析机器学习问题的方法,可以指引你朝着最有希望的方向前进。 1.2 正交化 正交化是使一个系统可以调节固定的按钮(knob)来可以达到一个方面的效果。如老电视有固定的按钮调节屏幕宽度,固定按钮调节屏幕高度,固定按钮调节屏幕角度等,最终可以使屏幕在...

2019-04-24 19:39:01

阅读数 37

评论数 0

改善深层神经网络第三周 超参数调试、正则化以及优化

3.1 调试处理 3.2 为超参数选择合适的范围 3.3 超参数训练的实践:Pandas VS Caviar 3.4 正则化网络的激活函数 3.5 将Batch Norm拟合进神经网络 3.6 Batch Norm为什么奏效? 3.7 测试时的Batch Norm 3.8 Softm...

2019-04-21 17:45:13

阅读数 53

评论数 0

改善深层神经网络第二周 优化算法

2.1 mini-batch梯度下降法 神经网络不能很好地利用大数据因为运行的太慢了,mini-batch梯度下降法可以提高运行速度。 将训练集分为很多baby training sets,叫做mini-batches. 用X{t},Y{t}做一步梯度下降,而不是用所有训练集。 2...

2019-04-20 21:30:51

阅读数 54

评论数 0

改善深层神经网络第一周 深度学习的实用层面

1.1 train/dev/test sets 神经网络的超参数的选择很多,通常一个领域的专家的经验不能用在另一个领域。 用训练集训练,用交叉验证集dev sets看哪种模型表现最好,最后用训练集得出准确率。 数据规模较小时,可用60 20 20传统比例划分训练集验证集测试集;在大数据时代,...

2019-04-19 12:12:25

阅读数 19

评论数 0

python妙用

1.列表推导式 bag = [1, 2, 3, 4, 5] 将元素翻倍的普通方法与巧妙方法: 2.遍历列表 遍历元素: 3.元素互换 4.初始化列表 注意,如果列表包含列表会产生浅拷贝。 5.构造字符串 6. 返回元组而不是列表 Python允许你在一个函...

2019-04-19 10:28:21

阅读数 35

评论数 0

神经网络和深度学习第四周 深层神经网络

4.1 深层神经网络 这周的练习比较长,所以视频会短一些,有充足的时间做练习。 notation: 4.2 深层网络中的前向传播 前向传播: 用for循环遍历神经网络的每一层。debug代码的一个方法是用纸笔过一遍矩阵的维数,下一个视频讲这个。 4.3 核对矩阵的维数 对单个...

2019-04-11 14:04:54

阅读数 22

评论数 0

神经网络和深度学习第三周 浅层神经网络

3.1 神经网络概览 方括号[1] [2]表示不同的层,x(i)表示单个训练样本。 这周讲一层隐藏层的神经网络。 3.2 神经网络表示 隐藏层的值在训练集中是无法看到的。输入层是第零层,这个图是有两层,第一层隐藏层,第二层输出层。 3.3 计算神经网络的输出 关注一下矩阵的大小: 前两个式...

2019-04-10 19:41:49

阅读数 26

评论数 0

神经网络和深度学习第二周 神经网络基础

2.1 二分分类 2.2 logistic 回归 我们这门课不用红色笔写的表示方法,而是把w,b看成两个独立的参数训练他们 2.3 logistic回归损失函数 2.4 梯度下降法 写代码时,用dw或db表示导数。 如果函数变量超过两个,就用花体倒e表示偏导;如果函数只有一个变量,就用d表...

2019-04-10 09:50:31

阅读数 21

评论数 0

神经网络和深度学习第一周 深度学习概论

1.2什么是神经网络 这一个神经元完成了函数的拟合: reLU:rectified linear unit修正线性单元:开始是0,然后上升,修正就是取不小于0的值。 将神经元堆叠可以得到更大的神经网络: 只要给足够的x和y,神经网络自动计算隐藏单元,我们只需要给出输入x和输出y: 神经网络在...

2019-04-10 09:49:50

阅读数 17

评论数 0

提示
确定要删除当前文章?
取消 删除