(六)可压缩气体的一元流动

本文介绍了可压缩气体一元流动的基本概念,包括声速的定义、特征及其与马赫数的关系。声速是气体中微小扰动波的传播速度,与等熵指数和气体常数相关。马赫数是衡量气体运动速度与声速比例的重要参数,用于区分不同类型的气流。文章还讨论了气体在变截面管中的流动规律,如密度和速度的关系,以及如何通过管道截面设计来加速气流。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

基本概念

可压缩气体一元流动的基本方程式

气体在变截面管中的流动


基本概念

声速:气体动力学中,声速泛指微小扰动波在流体介质中的传播速度,而不仅仅是指声音的传播速度。比如,弹拨琴弦,振动了空气,空气的压强、密度等参数发生了微弱的变化,这种状态变化在空气中形成了一种不平衡的扰动,扰动又以波的形式迅速的外传,其传播速度就是声速。

声速特征

  • 声速的大小与扰动过程中压力的变化量同密度的变化量的比值有关,流体越容易压缩则声速就越小。
  • 气体中的声速与等熵指数k和气体常数R有关。不同的气体有各自的声速。液体中的声速与体积弹性模量K有关,不同的液体有各自的声速。
  • 气体的声速随着气体的状态参数的变化而变化。同一流场中,如果各点的状态参数不同,则各点的声速也不同,所以声速指的是流场中某一点在某一瞬时的声速,称为当地声速。
  • 在同种介质中声速只是当地绝对温度的函数。不同地点不同位置气体的温度不同,声速也就不同。

对于完全气体,声速:c=\sqrt{\frac{dp}{d\rho }}=\sqrt{\frac{\gamma p}{\rho }}=\sqrt{\gamma RT}

式中\gamma为等熵指数,\gamma =c_{p}/c_{v}

马赫数

气体的运动速度和介质中声速之比,称为马赫数,用Ma表示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值