利用pca和knn实现人脸识别功能

本文介绍了如何结合主成分分析(PCA)和K最近邻(KNN)算法实现人脸识别功能。首先,PCA用于降低面部特征的维度,有效减少计算复杂度;接着,通过KNN算法进行分类,识别不同个体的面部。这种方法在人脸识别领域具有实用价值。
摘要由CSDN通过智能技术生成
 1import cv2
 2import numpy as np
 3import os
 4from sklearn import neighbors
 5import tkinter
 6from tkinter import filedialog
 7#读取人脸数据库
 8#准备训练数据
 9'''
10def openfile():
11    r = filedialog.askopenfilename(title='选择要识别的人脸', filetypes=[('face','*.jpg *.JPG'), ('All Files', '*')])
12    print(r)
13    x_test=cv2.imread(r,0)
14    cv2.imshow('you',x_test)
15    cv2.waitKey(0)
16    return x_test
17root = tkinter.Tk()
18btn1 = tkinter.Button(root, text='choose face', command=openfile)
19btn1.pack(side='left')
20root.title('李存程')
21root.mainloop()
22'''
23def loadimages(data):
24    '''
25    data:train content
26    images:[m,height,width]
27    m样本数
28    height高
29    width宽
30    name:名字的集合
31    label:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值