1import cv2
2import numpy as np
3import os
4from sklearn import neighbors
5import tkinter
6from tkinter import filedialog
7#读取人脸数据库
8#准备训练数据
9'''
10def openfile():
11 r = filedialog.askopenfilename(title='选择要识别的人脸', filetypes=[('face','*.jpg *.JPG'), ('All Files', '*')])
12 print(r)
13 x_test=cv2.imread(r,0)
14 cv2.imshow('you',x_test)
15 cv2.waitKey(0)
16 return x_test
17root = tkinter.Tk()
18btn1 = tkinter.Button(root, text='choose face', command=openfile)
19btn1.pack(side='left')
20root.title('李存程')
21root.mainloop()
22'''
23def loadimages(data):
24 '''
25 data:train content
26 images:[m,height,width]
27 m样本数
28 height高
29 width宽
30 name:名字的集合
31 label:
利用pca和knn实现人脸识别功能
最新推荐文章于 2024-08-29 14:48:32 发布
本文介绍了如何结合主成分分析(PCA)和K最近邻(KNN)算法实现人脸识别功能。首先,PCA用于降低面部特征的维度,有效减少计算复杂度;接着,通过KNN算法进行分类,识别不同个体的面部。这种方法在人脸识别领域具有实用价值。
摘要由CSDN通过智能技术生成