- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊
一、前期准备
1.设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms,datasets
import os,PIL,pathlib,warnings
warnings.filterwarnings("ignore")
#忽略警告信息
device = torch.device("cuda" if torch.cuda.is_available()else "cpu")
device
device(type='cuda')
2.导入数据
import os,PIL,random,pathlib
data_dir='F:/jupyter lab/DL-100-days/datasets/IDL_photos/J3-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames =[str(path).split("\\")[6] for path in data_paths]
classeNames
['0', '1']
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
test_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std =[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(data_dir, train_transforms)
total_data
Dataset ImageFolder Number of datapoints: 13403 Root location: F:\jupyter lab\DL-100-days\datasets\IDL_photos\J3-data StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=None) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) )
total_data.class_to_idx
{'0': 0, '1': 1}
3.划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x1434649b340>, <torch.utils.data.dataset.Subset at 0x143d65aff10>)
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True)
test_dl=torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True)
for X,y in test_dl:
print("shape of X [N,C,H,W]:", X.shape)
print("shape of y:",y.shape, y.dtype)
break
shape of X [N,C,H,W]: torch.Size([32, 3, 224, 224]) shape of y: torch.Size([32]) torch.int64
三、构建网络模型
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
1.DenseLayer模块
class DenseLayer(nn.Sequential):
def __init__(self,in_channel,growth_rate,bn_size, drop_rate):
super(DenseLayer,self).__init__()
self.add_module('norm1',nn.BatchNorm2d(in_channel))
self.add_module('relu1',nn.ReLU(inplace=True))
self.add_module('conv1',nn.Conv2d(in_channel, bn_size*growth_rate,
kernel_size=1, stride=1, bias=False))
self.add_module('norm2',nn.BatchNorm2d(bn_size*growth_rate))
self.add_module('relu2',nn.ReLU(inplace=True))
self.add_module('conv2',nn.Conv2d(bn_size*growth_rate, growth_rate,
kernel_size=3,stride=1,padding=1,bias=False))
self.drop_rate = drop_rate
def forward(self, x):
new_feature=super(DenseLayer,self).forward(x)
if self.drop_rate>0:
new_feature = F.dropout(new_feature, p=self.drop_rate, training=self.training)
return torch.cat([x,new_feature],1)
2.DenseBlock模块
''' DenseBlock '''
class DenseBlock(nn.Sequential):
def __init__(self,num_layers,in_channel,bn_size, growth_rate, drop_rate):
super(DenseBlock, self).__init__()
for i in range(num_layers):
layer = DenseLayer(in_channel+i*growth_rate, growth_rate, bn_size, drop_rate)
self.add_module('denselayer%d'%(i+1,),layer)
3.Transition模块
''' Transition layer between two adjacent DenseBlock '''
class Transition(nn.Sequential):
def __init__(self,in_channel,out_channel):
super(Transition,self).__init__()
self.add_module('norm',nn.BatchNorm2d(in_channel))
self.add_module('relu',nn.ReLU(inplace=True))
self.add_module('conv',nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, bias=False))
self.add_module('pool',nn.AvgPool2d(2,stride=2))
4.构建DenseNet
class DenseNet(nn.Module):
def __init__(self,growth_rate=32,block_config=(6,12,24,16),init_channel=64,
bn_size=4,compression_rate=0.5,drop_rate=0,num_classes=1000):
'''
:param growth rate:(int)number of filters used in DenseLayer, `k` in the paper
:param block config:(list of 4 ints)number of layers in eatch DenseBlock
:param init channel:(int)number of filters in the first Conv2d
:param bn_size:(int)the factor using in the bottleneck layer
:param compression rate:(float)the compression rate used in Transition Layer
:param drop rate:(float)the drop rate after each DenseLayer
:param num_classes:(int) 待分类的类别数
'''
super(DenseNet,self).__init__()
# first Conv2d
self.features =nn.Sequential(OrderedDict([
('conv0',nn.Conv2d(3,init_channel,kernel_size=7,stride=2,padding=3, bias=False)),
('norm0',nn.BatchNorm2d(init_channel)),
('relu0',nn.ReLU(inplace=True)),
('pool0',nn.MaxPool2d(3, stride=2, padding=1))
]))
# DenseBlock
num_features = init_channel
for i,num_layers in enumerate(block_config):
block = DenseBlock(num_layers,num_features, bn_size, growth_rate, drop_rate)
self.features.add_module('denseblock%d'%(i+1),block)
num_features += num_layers*growth_rate
if i != len(block_config)-1:
transition = Transition(num_features,int(num_features*compression_rate))
self.features.add_module('transition%d'%(i+1),transition)
num_features =int(num_features*compression_rate)
# final BN+ReLU
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
self.features.add_module('relu5',nn.ReLU(inplace=True))
#分类层
self.classifier =nn.Linear(num_features,num_classes)
#参数初始化
for m in self.modules():
if isinstance(m,nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant(m.bias,0)
nn.init.constant(m.weight, 1)
elif isinstance(m,nn.Linear):
nn.init.constant(m.bias,0)
def forward(self,x):
x= self.features(x)
x=F.avg_pool2d(x,7,stride=1).view(x.size(0),-1)
x=self.classifier(x)
return x
5.构建densenet121
device ="cuda" if torch.cuda.is_available()else "cpu"
print("Using {} device".format(device))
densenet121 =DenseNet(init_channel=64,
growth_rate=32,
block_config=(6,12,24,16),
num_classes=len(classeNames))
model = densenet121.to(device)
model
Using cuda device DenseNet( (features): Sequential( (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu0): ReLU(inplace=True) (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) (denseblock1): DenseBlock( (denselayer1): DenseLayer( (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) .......... (denselayer15): DenseLayer( (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) (denselayer16): DenseLayer( (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu1): ReLU(inplace=True) (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu2): ReLU(inplace=True) (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) ) ) (norm5): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu5): ReLU(inplace=True) ) (classifier): Linear(in_features=1024, out_features=2, bias=True) )
#统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model,(3,224,224))
---------------------------------------------------------------- Layer (type) Output Shape Param # ================================================================ Conv2d-1 [-1, 64, 112, 112] 9,408 BatchNorm2d-2 [-1, 64, 112, 112] 128 ReLU-3 [-1, 64, 112, 112] 0 MaxPool2d-4 [-1, 64, 56, 56] 0 BatchNorm2d-5 [-1, 64, 56, 56] 128 ReLU-6 [-1, 64, 56, 56] 0 Conv2d-7 [-1, 128, 56, 56] 8,192 BatchNorm2d-8 [-1, 128, 56, 56] 256 ReLU-9 [-1, 128, 56, 56] 0
...........
BatchNorm2d-359 [-1, 992, 7, 7] 1,984 ReLU-360 [-1, 992, 7, 7] 0 Conv2d-361 [-1, 128, 7, 7] 126,976 BatchNorm2d-362 [-1, 128, 7, 7] 256 ReLU-363 [-1, 128, 7, 7] 0 Conv2d-364 [-1, 32, 7, 7] 36,864 BatchNorm2d-365 [-1, 1024, 7, 7] 2,048 ReLU-366 [-1, 1024, 7, 7] 0 Linear-367 [-1, 2] 2,050 ================================================================ Total params: 6,955,906 Trainable params: 6,955,906 Non-trainable params: 0 ---------------------------------------------------------------- Input size (MB): 0.57 Forward/backward pass size (MB): 294.57 Params size (MB): 26.53 Estimated Total Size (MB): 321.68 ----------------------------------------------------------------
四、训练模型
1.编写训练函数
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
2.编写测试函数
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小
num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
3.正式训练
import copy
import torch
import torch.nn as nn
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
loss_fn = nn.CrossEntropyLoss()
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0.0 # 初始化为浮点数
best_model = None # 初始化 best_model
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
# 保存最佳模型到 best_model
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
best_model = copy.deepcopy(model)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
# 获取当前学习率
lr = optimizer.state_dict()['param_groups'][0]['lr']
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型到文件中
if best_model is not None:
PATH = './best_model.pth'
torch.save(best_model.state_dict(), PATH)
print('Done')
Epoch: 1, Train_acc:87.5%, Train_loss:0.306, Test_acc:85.8%, Test_loss:0.325, Lr:1.00E-04 Epoch: 2, Train_acc:88.2%, Train_loss:0.281, Test_acc:86.8%, Test_loss:0.306, Lr:1.00E-04 Epoch: 3, Train_acc:89.4%, Train_loss:0.253, Test_acc:87.4%, Test_loss:0.284, Lr:1.00E-04 Epoch: 4, Train_acc:90.7%, Train_loss:0.235, Test_acc:87.8%, Test_loss:0.285, Lr:1.00E-04 Epoch: 5, Train_acc:91.2%, Train_loss:0.224, Test_acc:90.7%, Test_loss:0.219, Lr:1.00E-04 Epoch: 6, Train_acc:92.3%, Train_loss:0.200, Test_acc:89.4%, Test_loss:0.259, Lr:1.00E-04 Epoch: 7, Train_acc:92.5%, Train_loss:0.186, Test_acc:91.3%, Test_loss:0.224, Lr:1.00E-04 Epoch: 8, Train_acc:93.0%, Train_loss:0.172, Test_acc:90.3%, Test_loss:0.272, Lr:1.00E-04 Epoch: 9, Train_acc:93.6%, Train_loss:0.165, Test_acc:90.2%, Test_loss:0.273, Lr:1.00E-04 Epoch:10, Train_acc:93.9%, Train_loss:0.157, Test_acc:91.1%, Test_loss:0.249, Lr:1.00E-04 Epoch:11, Train_acc:94.3%, Train_loss:0.149, Test_acc:90.1%, Test_loss:0.244, Lr:1.00E-04 Epoch:12, Train_acc:94.7%, Train_loss:0.138, Test_acc:91.8%, Test_loss:0.228, Lr:1.00E-04 Epoch:13, Train_acc:95.2%, Train_loss:0.120, Test_acc:90.0%, Test_loss:0.281, Lr:1.00E-04 Epoch:14, Train_acc:96.2%, Train_loss:0.099, Test_acc:88.1%, Test_loss:0.293, Lr:1.00E-04 Epoch:15, Train_acc:96.6%, Train_loss:0.095, Test_acc:90.5%, Test_loss:0.268, Lr:1.00E-04 Epoch:16, Train_acc:96.5%, Train_loss:0.095, Test_acc:91.3%, Test_loss:0.250, Lr:1.00E-04 Epoch:17, Train_acc:96.8%, Train_loss:0.085, Test_acc:90.3%, Test_loss:0.322, Lr:1.00E-04 Epoch:18, Train_acc:97.4%, Train_loss:0.073, Test_acc:90.9%, Test_loss:0.290, Lr:1.00E-04 Epoch:19, Train_acc:96.9%, Train_loss:0.085, Test_acc:85.8%, Test_loss:0.451, Lr:1.00E-04 Epoch:20, Train_acc:97.0%, Train_loss:0.081, Test_acc:91.2%, Test_loss:0.265, Lr:1.00E-04 Done
五、模型评估
1. Loss与Accuracy图
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
from datetime import datetime
current_time = datetime.now()
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time)
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 模型评估
#将参数加载到model当中
best_model.load_state_dict(torch.load(PATH, map_location=device))
epoch_test_acc,epoch_test_loss =test(test_dl, best_model, loss_fn)
epoch_test_acc,epoch_test_loss
(0.917568071615069, 0.22816931214627056)
六、学习心得
1.本周的DenseNet网络模型搭建了DenseLayer模块、DenseBlock模块、Transition模块等。并且应用于乳腺癌病理图像的识别与分类中。DenseLayer模块:每一层接收所有前面层的特征图作为输入,通过批归一化、ReLU、1×1和3×3卷积提取和融合低级与高级特征,增强模型对病理图像中复杂细胞形态的表征能力。DenseBlock模块:由多个DenseLayer堆叠组成,实现层层之间特征的密集连接与融合,有效捕捉乳腺癌病理图像中的多尺度、异质性和细粒度特征。Transition模块:位于DenseBlock之间,通过1×1卷积降维与2×2平均池化下采样压缩特征图尺寸,降低计算复杂度,防止过拟合同时保留关键信息。
2.由于此网络较深,显著增加了内存开销与计算量,代码运行需要耗费大量时间。但是此网络容易达到比较高的准确率。然而,正是这种结构特性,使得DenseNet能够充分提取病理图像中复杂的细粒度特征、核密度、细胞形态与空间结构等重要信息。