【python】pandas的excel处理:员工薪水分析

导入数据并把数据读出

import pandas as pd
data = pd.read_csv("salaries.csv")
data.head()

删除ID列

data.drop(["ID"], axis = 1, inplace = true)

axis = 0 代表跨行,axis = 1 代表跨列

把所有列改成中文

data.columns = ["员工姓名","员工职位","基本工资","加班工资",
              "其他支付","福利","总共支付","总共支付加福利",
              "入职年份","附加说明","代理","状态"]

查看员工姓名这一列

data["员工姓名"]

查看入职年份有几个

data["入职年份"].nunique()

计算平均工资

data["基本工资"].mean()

加班工资的最高金额

data["加班工资"].max()

人名是GARY JIMENEZ的基本工资有多少

data[data["员工姓名"]=="GARY JIMENEZ"]["基本工资"]

收入最高的人是谁(总共支付加福利)

data[data["总共支付加福利"]==data["总共支付加福利"].max()]["员工姓名"]

收入最低的人是谁(总共支付加福利)

data[data["总共支付加福利"]==data["总共支付加福利"].min()]["员工姓名"]

每年所有员工的平均的基本工资是多少

data.groupby("入职年份").mean()["基本工资"]

任职人数最多的5个岗位 (排序) 正序和倒序

data.groupby("员工职位").count()["员工姓名"].sort_values(
ascending = False).head(5)

ascending=False 倒序
ascending=True(默认) 正序

value_counts()是值计数统计

data["员工职位"].value_counts().head(5)

这个机构有多少个工作岗位

data["员工职位"].nunique()

2014年有多少个职位只由一个人担任

sum(data[data["入职年份"]==2014]["员工职位"].value_counts()==1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值